
J. Fluid Mech. (2010), vol. 654, pp. 305–350. c© Cambridge University Press 2010

doi:10.1017/S0022112010000625

305

Turbulent hydraulic jumps in a stratified
shear flow

S. A. THORPE†
School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK

(Received 12 August 2009; revised 27 January 2010; accepted 29 January 2010;

first published online 14 May 2010)

The conditions are examined in which stationary hydraulic jumps may occur in a
continuously stratified layer of fluid of finite thickness moving over a horizontal
boundary at z = 0 and beneath a deep static layer of uniform density. The velocity and
density in the flowing layer are modified by turbulent mixing in the transition region.
Entrainment of fluid from the overlying static layer is possible. Results are expressed
in terms of a Froude number, Fr , characterizing the flow upstream of a transition. A
Froude number, Fr∗, is found that must be exceeded if conditions for the conservation
of volume, mass and momentum fluxes across a hydraulic transition are satisfied. The
condition Fr >Fr∗ is satisfied if the kinetic energy (KE) per unit area is greater than

the potential energy per unit area, or if
∫ h

0
[u2(z) − z2N2(z)]dz > 0, in a flow of speed

u(z), in a layer of thickness h, with buoyancy frequency N(z). In the particular case
(referred to as an ‘η profile’) of a flow with velocity and density that are constant if
z � ηh, decrease linearly if ηh � z � h, and in which u(z) = 0 and density is constant
when z � h, long linear internal waves can propagate upstream, ahead of a stationary
hydraulic jump, for Fr in a range Fr∗ < Fr < Frc; here Frc is the largest Fr at
which long waves, and wave energy, can propagate upstream in a flow with specified
η. (Profiles other than the η profile exhibit similar properties.) It is concluded that
whilst, in general, Fr >Fr∗ is a necessary condition for a hydraulic jump to occur,
a more stringent condition may apply in cases where Fr∗ < Frc, i.e. that Fr >Frc.

Physical constraints are imposed on the form of the flow downstream of the
hydraulic jump or transition that relate, for example, to its static and dynamic
stability and its stability against a further hydraulic jump. A further condition is
imposed that relates the rate of dissipation of turbulent KE within a transition to the
loss in energy flux of the flow in passing through the transition from the upstream
side to the downstream. The constraints restrict solutions for the downstream flow to
those in which the flux of energy carried downstream by internal waves is negligible
and in which dissipation of energy occurs within the transition region.

Although the problem is formulated in general terms, particular examples are given
for η profiles, specifically when η =0 and 0.4. The jump amplitude, the entrainment
rate, the loss of energy flux and the shape of the velocity and density profiles in the
flow downstream of a transition are determined when Fr >Fr∗ (and extending to
those with Fr >Frc) in a number of extreme conditions: when the loss of energy
flux in transitions is maximized, when the entrainment is maximized, when the jump
amplitude is least and when loss of energy flux is maximized subject to the entrainment
into the transitions being made zero. The ratio of the layer thickness downstream
and upstream of a transition, the jump amplitude, is typically at least 1.4 when
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jumps are just possible (i.e. when Fr ∼ Frc). The amplitude, entrainment and non-
dimensionalized loss in energy flux increase with Fr in each of the extreme conditions,
and the maximum loss in energy flux is close to that when the entrainment is greatest.
The magnitude of the advective and diffusive fluxes across isopycnal surfaces, i.e. the
diapycnal fluxes characterizing turbulent mixing in the transition region, also increase
with Fr. Results are compared to those in which the velocity and density profiles
downstream of the transition are similar to those upstream, and comparisons are
also made with equivalent two-layer profiles and with a cosine-shaped profile with
continuous gradients of velocity and density. If Fr is larger than a certain value
(about 7 and > Frc, if η = 0.4), no solutions for flows downstream of a transition are
found if there is no entrainment, implying that fluid must be entrained if a transition
is to occur in flows with large Fr. Although the extreme conditions of loss of energy
flux, jump amplitude or entrainment provide limits that it must satisfy, in general no
unique downstream flow is found for a given flow upstream of a jump.

1. Introduction: the problem posed
A spectacular hydraulic jump is sometimes observed in the atmosphere in the lee

of the Sierra Nevada range. The phenomenon is illustrated in a photograph taken by
Robert Simons reproduced in textbooks by Turner (1973) and Lighthill (1978). The
transition is made visible by cloud and dust, and appears as a dramatic and abrupt
increase, by a factor of about 5–10, in the thickness of the layer of air descending
as an overflow of the mountain chain. The flow seems to be turbulent within and
immediately behind the jump. Observations of turbulence and vertical diffusion in
stratified flows over sills and through channels in the abyssal ocean, for example, in
the Romanche Fracture Zone (Polzin et al. 1996; Ferron et al. 1998), the Atlantis II
Fracture Zone through the SW Indian Ridge (Mackinnon, Johnston & Pinkel 2008)
and the Lucky Strike segment of the Mid-Atlantic Ridge (St Laurent & Thurnherr
2007), has led to speculation that hydraulic jumps make a significant contribution
to mixing in the deep ocean (Thurnherr et al. 2005; Thorpe 2007), but there are as
yet no incontrovertible observations to prove the existence of these postulated flow
transitions. In the relatively shallow water of Knight Inlet, British Columbia, however,
Farmer & Armi (1999) have observed a stationary hydraulic jump in the lee of the
sill where the downslope flow in a bottom layer during ebb tide increases in thickness
from about 10 m to 50 m beneath an almost static, weakly stratified and relatively
thick layer (see especially Farmer & Armi 1999, figures 7iid and 14). Hydraulic jumps
may possibly also occur in cold water cascading downslope in the ocean and in lakes
in winter (Thorpe & Ozen 2008, 2009), and there is some evidence (e.g. Stastna &
Lamb 2008, figures 15c and 16) that jumps occurring in a stratified oceanic flow
in the lee of submarine topography may lead to sediment suspension. Examples
of stationary turbulent internal hydraulic jumps in the laboratory are provided by
Wilkinson & Wood (1971) and Simpson (1997, see e.g. figures 12.4 and 12.14), and
circular internal hydraulic jumps are described by Thorpe & Kavčič (2008).

It is therefore evident that stationary turbulent hydraulic jumps occur in at least
some stratified shear flows. Here a theory is devised for jumps in stratified flows which
follows that for a stationary hydraulic transition in a steady uniform inviscid constant
density flow of depth h and speed u, e.g. in a hydraulic jump in a river downstream
of a weir, where a Froude number, Fr = u2/c2, is defined as the square of the speed
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of the flow divided by the maximum speed of waves relative to the flowing water
or, more precisely, their maximum group velocity, which is equal to the speed of the
longest waves, c =

√
gh. Application of conservation equations for volume, mass and

momentum together with the condition that there is no increase in energy flux, proves
sufficient to show that the Froude number of the flow approaching a stationary
transition must exceed unity (i.e. the flow speed u is greater than the long-wave
speed c) if a hydraulic jump is to be possible, and that the Froude number of the
single-layer flow leaving the jump must then be less than unity and the water level
must increase through the transition (Lighthill 1978). The change in water level in the
jump can be related to the Froude number of the flow approaching the transition: the
speed and depth of the flow downstream of a transition can be predicted in terms of
their upstream values. Weak jumps, having a change in water depth less than about
0.3 times the water depth upstream of the jump (or q = h2/h1 < 1.3 and a Froude
number <1.5), are generally undular in form, whereas transitions with highly turbulent
fronts form when the jump amplitude is greater. A flux of energy is carried downstream
within waves of an undular jump, whereas most of the loss in energy flux occurs
through turbulent dissipation within jumps of greater amplitude. The critical Froude
number of unity (when u = c) derived from the continuity equations also corresponds
to that required to prevent waves – and wave energy – from propagating upstream
from the stationary transition. It is shown later, however, that in a stratified flow, the
conservation equations do not lead, in general, to a corresponding Froude parameter
limit at which wave energy cannot propagate upstream. The implication is that stable
hydraulic jumps in at least some stratified flows, with no upstream wave radiation
possible, can occur only in conditions where the jump amplitude is substantial and
where there is significant dissipation of energy in the transition region.

Much attention has been given to internal hydraulic jumps in two-layer flows, each
layer uniform in density and velocity but with discontinuities at the interface, and in
which the flow retains a two-layer structure after the transition. Yeh (1991), Baines
(1995), Klemp, Rotunno & Skamarock (1997), Holland et al. (2002), Hassid, Regev
& Poreh (2007) and Swaters (2009) provide examples and list further references. The
flows that occur naturally in the ocean and atmosphere are, however, continuously
stratified with no discontinuities in density or velocity. Examples of such flows are
considered here. The situation in stratified shear flows is much more complex than in
uniform single layers particularly when, as it appears in the transition in the lee of the
Sierra Nevada, the flow becomes turbulent within the transition, and consequently
its velocity and density structure is changed by mixing. In general, stratification
allows internal waves to radiate vertically from the turbulent region in which a
transition occurs, and flows may not be unidirectional. It consequently becomes
difficult to compose physically realistic equations that express the conservation of flow
properties from one side of the transition to the other. Stratification within a flowing
layer, however, provides the advantage that, by comparing the density and velocity
profiles on the two sides of a jump, it is possible to assess and quantify some aspects
of mixing within the transition region, as explained in § 2.4 and shown in later figures
(e.g. figure 8). (Nevertheless, it is hardly appropriate to suggest that this is one of the
cases in which ‘This can mean that the dynamics of a “simple” homogeneous fluid is
actually more complicated than that of a stratified fluid’ (Lighthill 1978, p. 451).)

We shall, for simplicity, confine attention to a particular case in which the
flow approaching a stationary hydraulic jump from one side (the ‘upstream’ flow;
‘upstream’ and ‘downstream’ are used to indicate location relative to the transition)
is unidirectional and in which the motion and variations in density of this flow are
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confined to a layer of limited extent that lies above a horizontal boundary at z = 0
and beneath a deep layer of zero velocity and uniform density, the latter precluding
the possibility of upward internal wave radiation from the transition region. The
fluid is supposed to be incompressible and viscosity is negligible except in its support
of turbulent dissipation in the transition region. Free slip may occur at the lower
boundary (although not necessarily) and, in deriving the equation of momentum
conservation, the stress at the boundary is supposed to be negligible. It is assumed
that the velocity and density structure of the upstream flow are specified and that the
speed of this flow and its overall (or top to bottom) vertical variation in density can
be represented by a non-dimensional number similar in form to a Froude number (to
be denoted by Fr), but not necessarily or generally equal to a conventional Froude
number, proportional to the flow speed divided by the group velocity of the fastest
propagating waves.

Except in very limited conditions and unlike a transition in a single layer with
uniform density and velocity, neither the structure of the density or the velocity of
the flow leaving the transition (the ‘downstream’ flow) can be regarded as known.
As mentioned above, turbulence and mixing within the transition region change the
density profile (and may reduce its overall variation), and Reynolds stresses in the
turbulent transition modify the velocity profile. The changes that occur are subject
to conservation, stability and diapycnal flux conditions discussed in § 2. Attention is
focussed on relatively large jumps that are consistent with those observed and in
which, if akin to the jumps in single layers, turbulence rather than wave radiation
may account for the loss in energy flux. (Simpson 1997, suggests that undular internal
jumps occur if q is less than about 2, a value not substantiated by observations but
somewhat greater than the limit of 1.3 for undular jumps in single layer hydraulics.)

A minimum value of the Froude number, Fr∗, at which the conservation equations
at a hydraulic jump can be satisfied is found in § 3.

Several simple questions may be posed. For example, what is the minimum Froude
number, Fr, of a given stratified upstream flow at which a hydraulic transition can
occur? Is it equal to Fr∗? If Fr exceeds the minimum value for a jump, is the
downstream flow similar to that which occurs upstream or when Fr is marginal? Is
the downstream flow corresponding to a given upstream flow uniquely determined
when a set of physically realistic conditions are applied? Do the jump amplitude and
the loss of energy flux increase with Fr? How large is the diapycnal flux within the
transition? Is entrainment of overlying fluid into a transition inevitable?

Such questions are addressed and investigated in detail for selected examples of
the upstream flow defined in § 4.1. The speed of long small-amplitude internal waves
can be calculated analytically in these cases (§ 4.2), as can the maximum Fr at which
such waves can propagate in the upstream direction. This maximum Froude number
is found in the examples to be generally greater than Fr∗, and is denoted as Frc,
implying a critical value; it is a value of Fr that must be exceeded for stable jumps
to be possible in the selected examples (§ 4.3). A value of Fr slightly greater than
Fr∗ is not always sufficiently large to prevent long small-amplitude internal waves
from propagating upstream, and it follows that only jumps of finite amplitude can
be stable. This implies a fundamental difference between hydraulic jumps in stratified
flows and in single or two-layer flows that is additional to the other basic differences
that exist between these continuously stratified and two-layer shear flows (e.g. those
differences identified by Thorpe & Kavčič 2008).

Downstream flows that have similar density and velocity profiles to those upstream
are considered in § 5 but are restrictive and, as is shown later (e.g. figures 7 and 10),
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Figure 1. A hydraulic jump or transition in stratified shear flow. Profiles of density (fi(z))
and velocity (Fi(z)) (i = 1, upstream and i = 2, downstream) in the layer are sketched in the
flowing layer beneath the deep stationary layer of uniform density ρ0(1 − ∆). Q is the flux
of volume entering the flowing region within the transition. An isopycnal, density ρ = ρA, is
shown, entering the transition at level z = z1 and leaving it at level z2, as discussed in § 2.4.
The line AB denotes the notional mean location of the isopycnal surface within the turbulent
transition region. AD is a surface across which the upstream flow below the selected isopycnal
enters the transition, and CD the region of the downstream flow below the isopycnal after
turbulence generated within the transition has decayed. The quantities QA and FA represent
the upward advective volume flux and of the diffusive flux of mass across the isopycnal within
the transition. (There is no flux through the horizontal plane, z = 0.) As a result of mixing, the
maximum density of the upstream flow, ρ0(1 + ∆) at z = 0, may exceed the maximum density
of the downstream flow, ρ0[1 + ∆(2δ − 1)] at z = 0, so δ < 1. There are then (as sketched)
upstream ρB isopycnals that intersect the z = 0 boundary and do not re-emerge in the flow
downstream of the transition region.

not necessarily representative. A general expression for the form of the downstream
flow is proposed in § 6.1. The main results of the analysis of transitions when Fr >Fr∗
and covering a range of Fr extending beyond Frc are described in §§ 6.2–6.4 and are
illustrated in figures. These include profiles of the possible downstream flows that can
occur under the set of conditions specified in § 2 and in four extreme cases defined
in § 6.1, in addition to the diapycnal fluxes within the transition region necessary for
the downstream flows to be possible. The results and applications are summarized,
extended and discussed in § 7 to which readers wishing to avoid all the details, but
to see the main conclusions, are referred. Details of the analysis and methodology
outlined in the main text are given in eight appendices.

2. Conservation and conditions on the upstream and downstream flows
2.1. The upstream and downstream flows

Following Thorpe & Ozen (2007), we shall assume that the velocity upstream and
downstream of the transition is uniform in a horizontal direction and depends only
on the vertical coordinate, z, as sketched in figure 1. The velocity is given by

ui(z) = UiFi(z/hi) when 0 � z � hi, (1)
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where subscript i = 1 indicates the steady upstream flow approaching a jump and
i = 2 indicates the steady downstream flow beyond the jump, with Fi(0) = 1. The
velocity ui(z) = 0 when z >hi . The density is

ρi(z) = ρ0[1 − ∆ + 2∆fi(z/hi)] when 0 � z � hi, (2)

with ρi(z) = ρ0(1 − ∆) when z >hi , Both Fi and fi are positive functions of z/hi(= x)
which define the velocity and density ‘profiles’ (i.e. variation with z.). The reference
density ρ0, the measure of density variation ∆ and the velocity measures Ui are
all positive. These conditions imply that the velocity both ahead and beyond the
transition is positive, i.e. in a direction from upstream to downstream, at all levels
z < hi , with no reversed flow, consistent with the assumption of a unidirectional flow
and with no source of fluid at any level, z, beyond the transition. The density in z >hi

is taken to be uniform so that no energy can be lost through the upward radiation of
internal waves from the transition. We shall insist that Fi(1) = 0 and fi(1) = 0 making
the velocities and densities in the upstream and downstream flows continuous at
z = hi . The functions, dfi(z/hi)/dz, are taken to be � 0 to ensure static stability, and
f1(0) = 1, so defining the maximum upstream density as ρ0(1 + ∆) and 2ρ0∆ as the
density change from z = 0 to z = h1. Further, we define a parameter, δ � 1, so that the
maximum density in the downstream flow (found at z = 0, since dfi(z/hi)/dz � 0) is
given by (2) with f2(0) = δ: ρ2(0) = ρ0[1 − ∆ + 2∆δ]). This must be less than or equal
to the maximum density upstream (there being no mechanism within the transition to
increase the density). For convenience, we let f2(x) = δf ′

2(x), so that the new density
function f ′

2(x) decreases monotonically from 1 at x = 0 to 0 at x = 1.

2.2. Entrainment and the conservation of fluxes

Conservation laws relating to the fluxes of volume, mass and momentum are satisfied
across the transition region. For convenience, the conservation equations given by
Thorpe & Ozen (2007, with an amendment: Thorpe & Ozen 2009) are reproduced
in the Appendix A (see (A 1)–(A 6)). The turbulence within the transition region may
entrain fluid from above the moving upstream layer at a rate, Q, and this entrained
fluid contributes to the downstream fluxes (figure 1). A parameter P is used to provide
a non-dimensional representation of the entrained flow:

P = 1 + Q

/(
U1h1

∫ 1

0

F1(x) dx

)
. (3)

The entrainment parameter P is equal to the downstream volume flux divided by the
upstream volume flux, and (P − 1) is equal to the volume flux of fluid Q, entrained
in the transition divided by the upstream volume flux. There is no entrainment when
P = 1. Using (A 5), P may be written as

P = P0/δ, (4)

where

P0 =

∫ 1

0

f1(x)F1(x) dx

∫ 1

0

F2(x) dx

/(∫ 1

0

f ′
2(x)F2(x) dx

∫ 1

0

F1(x) dx

)
(5)

depends on specified profiles, F1 and f1 of the upstream flow, and on F2 and f ′
2, the

functions that define the (generally unknown) shape of the downstream flow.
There are two important limits implied by (4). If there is no entrainment, P =1,

and so δ = P0, which must be �1. Alternatively, if there is no mixing within the flow
so that its maximum density is not reduced as it passes through the transition, then
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δ = 1, and so P = P0, �1 since fluid is assumed to be entrained, and not detrained,
within the transition.

A number that characterizes the upstream flow and has the form of a Froude
number is

Fr = U 2
1 /(g∆h1), (6)

and when the flux of momentum is conserved, (A 6) relates Fr to the amplitude of the
change in levels, q = h2/h1, and to integral properties of the upstream and downstream
flows. (A Froude number might also be characterized by Fr = U 2

1 /(2g�h∗), where
h∗ is the mean depth of the bottom layer and 2∆ is the density change across the
moving layer. Neither form is necessarily equal to the ratio of the flow speed to the
propagation speed of long internal waves and so, in general, neither is equal to a
conventionally defined Froude number.) Using (4), (A 6) can be written as

Fr = 2q

[
q2P0

∫ 1

0

xf ′
2(x) dx − P

∫ 1

0

xf1(x) dx

]/[
P

∫ 1

0

F 2
1 (x) dx

{
q − P 2

×
∫ 1

0

F 2
2 (x) dx

(∫ 1

0

F1(x) dx

)2/[ ∫ 1

0

F 2
1 (x) dx

(∫ 1

0

F2(x) dx

)2]}]
, (7)

which must be positive.
Another condition must be satisfied: the loss of the energy flux in the flow as it

passes through the transition from the upstream to the downstream cannot be negative
since energy is not created within the transition; energy can only be maintained, lost
in turbulent dissipation or radiated by internal waves that carry energy downstream.
From (A 7) the change of the energy flux per unit width in the transition, E′, is
expressed in non-dimensional form as

E ≡ E′(ρ0g∆h2
1U1

)
=

{
(Fr/2)

[ ∫ 1

0

F 3
1 dx−

∫ 1

0

F 3
2 dx

(∫ 1

0

F1 dx

/∫ 1

0

F2 dx

)3

P 3/q2

]}

+ 2

[ ∫ 1

0

xf1F1 dx +

∫ 1

0

F1

∫ 1

x

f1(y) dy dx

]
− 2q

[ ∫ 1

0

f1F1 dx

/ ∫ 1

0

f ′
2/F2 dx

]

×
[ ∫ 1

0

xf ′
2/F2 dx +

∫ 1

0

F2

∫ 1

x

f ′
2/(y) dy dx

]
. (8)

The first term on the right-hand side, that in the {. . .} brackets, is proportional to
the rate of loss of kinetic energy (KE) flux in the transition. The remainder is the
sum of the work done by the pressure and the rate of loss of potential energy flux.

The constraints imposed so far are
(a) the upstream and downstream flows are unidirectional;
(b) the density is uniform and the flow at rest when z � hi , i = 1, 2; no waves can

be radiated upwards from a transition;
(c) the upstream and downstream flows are stably stratified (with dfi(z/hi)/dz �

0);
(d ) the maximum density of the downstream flow is not greater than that upstream,

so δ � 1;
(e) fluid is not detrained in the transition; there is positive or no entrainment, so

P � 1;
(f ) the change in energy flux in the transition cannot be negative: E � 0; and
(g) values of q, P, f ′

2(x) and F2(x) cannot be such that Fr, given by (7), is negative.
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2.3. Stability

Additional conditions are imposed on the downstream flow to ensure that it is stable:
(h) the downstream flow is dynamically stable. To ensure this we confine the

possible downstream flows to those with a minimum gradient Richardson number,
Ri2, that is sufficiently large to ensure dynamical stability (e.g. min(Ri2) � 1/4), noting
that condition (c) in the downstream flow becomes redundant if min(Ri2) � 0. (The
condition min(Ri2) � 1/4, selected for simplicity, ‘ensures’ stability – it is sufficient
but not necessary: the flow may be stable to small disturbances when min(Ri2) < 1/4
(see e.g. Thorpe & Ozen 2007; Thorpe & Liu 2009). Although we shall examine only
cases where the upstream flow is stably stratified, we shall not insist it is dynamically
stable, because in reality this may not be the case, e.g. where it is composed of
Antarctic Bottom Water accelerating through a slowly narrowing passage through
the Mid-Atlantic Ridge or after the acceleration of a downslope flow before the
dynamical instability has resulted in the growth of Kelvin–Helmholtz billows.); and

(i ) the downstream flow is not able to undergo a further transition; it is ‘stable’
to further transition. This is expressed by the condition S � 1 ((A 10), although this
may be too severe a constraint: see Appendix A).

Using (1), (2) and (A 4), min(Ri2) can be expressed as

min(Ri2) = (q/P )3
[(

2P 3
0 /Fr

)(∫ 1

0

f ′
2F2 dx

/∫ 1

0

f1F1 dx

)2]
× min[−df ′

2/dx)/(dF2/dx)2]. (9)

With (4), and since f2(0) = δ, (A 10) gives

S = FrP 4

/{
4q3

[ ∫ 1

0

xf ′
2 dx

/∫ 1

0

F 2
2 dx

][ ∫ 1

0

f ′
2F2 dx

/ ∫ 1

0

f1F1 dx

]2

P 4
0

}
. (10)

2.4. Diapycnal fluxes within the transition

Conditions (a)–(i ) prove generally insufficient to constrain solutions for the
downstream flow to a single form.

The relation of mixing within the transition to the change in energy flux is now
investigated. We introduce a condition that relates the total rate of loss of energy flux,
E′, the difference between fluxes of energy in the upstream and downstream flow,
to the flux of volume and mass (i.e. the diapycnal fluxes) across isopycnal surfaces.
An isopycnal surface with density ρA is selected, one that appears in the upstream
flow at levels z1 and in the downstream flow at levels z2, as shown in figure 1. We
examine the fluxes into the region ABCD spanning the transition, where AB is the
notional mean location of the ρA isopycnal within the region of turbulent mixing in
the transition, and CD lies on the horizontal plane at z = 0. (If, because of mixing
within the transition, δ < 1, the full range of density in the upstream flow will not
be found in the downstream flow; some upstream isopycnals, those with density
greater than ρ0(1 − ∆ + 2δ∆), will ‘disappear’ through mixing within the transition
region, as does the ρ = ρB isopycnal in figure 1. In this case there is no flux in the
downstream flow below any isopycnal that disappears within the transition – there
is no corresponding isopycnal downstream – and the upstream fluxes of volume and
mass below the isopycnal are then equal to the upward vertical fluxes through the
isopycnal within the transition region. An example is discussed in § 6.2 in connection
with figures 7(d) and 8(b).)
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There are both advective and diffusive fluxes across the isopycnal surface AB. Let
QA be the net upward flux of volume across AB (i.e. the advective flux), and FA

be the net upward diffusive flux of density. Equations for the fluxes are derived in
Appendix B and used to express QA and FA in non-dimensional forms:

Q∗ ≡ QA

/(
U1h1

∫ 1

0

F1 dx

)
andF ≡ FA/∆ρ0U1h1, (11)

given by (B 3) and (B 7), respectively, with terms that are known once the upstream
flow is specified and a particular downstream flow is selected or determined.

The eddy diffusion coefficient Kv in the stratified turbulent region of the transition
can be expressed as

Kv = Γ ε/N2, (12)

where Γ is a mixing efficiency factor, usually taken to be about 0.2 (an approximate
upper limit; Osborn 1980), ε is the rate of dissipation of turbulent KE per unit mass
and N is the mean buoyancy frequency given by

N2 = −(g/ρ0) dρ/dz, (13)

where ρ is the mean density at level z.
The upward diffusive flux per unit width across the isopycnal surface within the

transition is

FA = −LKv dρ/dz, (14)

where L is the length of the transition region and, since dρ/dz � 0, FA must be �0
to ensure that Kv is positive. Eliminating N and Kvdρ/dz from (12)–(14):

ε = gFA/Γ Lρ0, (15)

and the mean rate of loss of turbulent KE in the transition region is therefore

〈ε〉ρ0L(h1 + h2)/2 = (g〈FA〉/2Γ )h1(1 + q), (16)

where ‘〈 〉’ denotes vertically average values and q =h2/h1. (The depth of the transition
has been approximated as (h1 +h2)/2. The possible percentage error is 100(q −1)/(q +
1), or 50 % if q = 3.) The mean rate of turbulent dissipation is equal to the loss of
energy flux per unit width in the transition E′ given by (8), if

Γ = 〈F 〉(1 + q)/2E, (17)

where it is assumed that all the loss in energy flux occurs within the transition region,
none by downstream internal wave radiation in an undular jump.

This provides two further constraints:
(j ) the density flux FA within the transition must be positive upwards (and so

positive downgradient, consistent with a positive Kv in (14)), and
(k ) the loss of energy flux in the transition, E, must be consistent with the mean

diapycnal flux, 〈F 〉, within the transition region, giving a value of Γ estimated from
(17) of about 0.2.

2.5. Extreme values of q, P and E

Although these added constraints eliminate some solutions for the downstream flow
that, otherwise, appear plausible, the downstream flow is not necessarily found to be
uniquely determined (i.e. for some selected upstream flows, there is more than one
choice of the downstream flow that satisfies all the conditions). We shall therefore
also resort to finding downstream flow solutions for specified upstream flows that
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Fr = constant

Fr increasingE increasing

S = 1

q

E < 0

P

(qm, Pm)

min (Ri2) = 1/4

P0

1

Fr < 0

Fr = constant

Figure 2. Sketch showing two lines of constant (but different) Fr > 0 in the (q–P) plane for
given upstream and selected downstream flows. Fr < 0 between the dashed lines. E < 0 near
the P axis, and E � 0 and increases to the right where Fr > 0. The point where the entrainment
coefficient P is greatest on a curve of constant Fr (see (18) and (19)) is marked by the point
(qm, Pm). The curves min(Ri2) = 1/4 and S = 1 which specify boundaries of the regions in
which conditions (h) and (i ) are satisfied are shown. ‘Stable’ conditions are found to the right
of these curves. The relative positions of the curves and the point (qm, Pm) depend on the
chosen upstream and downstream flows. (The curve S = 1 lies to the right of the point (qm, Pm)
and the line min(Ri2) = 1/4, both here and in the corresponding curves shown in figure 5. In
such cases the largest value of P for which conditions (h) and (i ) are satisfied is where S = 1
intersects Fr = constant. More commonly, however, it appears that the curve min(Ri2) = 1/4 –
and condition (h) – determines the limiting condition.)

occur at extreme values of q, P or E expressed explicitly as cases (i)–(iv) in § 6.1.
A condition that the transition involves the greatest loss of energy flux, E, provides
information about the bounds on the possible dissipation from a given flow within
a hydraulic transition, and the values of P and q at which these bounds are reached
are discussed in Appendix C in the limited conditions of fixed F2 and f ′

2.
The general form of the relationship between q and P for a particular choice of the

downstream flow is sketched in figure 2. (Specific examples when the upstream and
downstream flows have ‘similar’ properties are shown later in figure 5.) The ranges
of q and P which satisfy (7) (i.e. the ranges of those points (q, P ) that are on a curve
Fr = constant for a given upstream flow) are limited, and they will vary with the
form of the downstream flow. The range of physically realistic values is also limited
by the condition (f ): E � 0, and condition (g): Fr > 0; only for sufficiently large q are
the conditions satisfied. The relative locations of the curves min(Ri2) = 1/4 and S = 1
which specify boundaries of the regions in which conditions (h) and (i ) are satisfied
(those at relatively large values of q), all vary with the downstream flow given by F2

and f ′
2, on which the value P0 also depends.

Equation (7) provides a relation between q and P for given Fr, F1, f1, F2 and f ′
2.

Differentiating with respect to q it is found that there is a single value qm at which P
is a maximum given by

qm = (1/γ )

{[
γ

(
Fr

∫
F 2

1 dx + 2

∫
xf1 dx

)
− 2P0

∫
xf ′

2 dx

]/(
χFr

∫
F 2

1 dx

)}1/3

,

(18)
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when

P ≡ Pm = γ q2
m, (19)

where

γ = 6P0

∫
xf ′

2 dx

/(
Fr

∫
F 2

1 dx + 2

∫
xf1 dx

)
(20)

and

χ =

∫
F 2

2 dx

(∫
F1 dx

)2/[ ∫
F 2

1 dx

(∫
F2 dx

)2]
, (21)

all integrals being from x = 0 to x = 1. Substitution of the values, qm and Pm into (8)
enables the rate of energy loss to be found when the entrainment rate is greatest. The
downstream flow at qm and Pm may not, however, satisfy all the conditions (f ), (h)
and (i ) required to ensure that it is physically possible; the point (qm, Pm) in figure 2
may lie to the left of any one of the curves E =0, min(Ri2) = 1/4 and S = 1.

In § 4 we shall select specific profiles of upstream velocity and density to provide
illustrative examples, and in subsequent sections examine the possible downstream
profiles that comply with the constraints and which emerge after transition from these
particular upstream profiles.

3. A Froude number necessary for a transition
Following the theory of single-layer flows (§ 1), we define the Froude number Fr∗ to

be that of the smallest upstream flow U1 at fixed h1 and ∆, for which the conservation
equations can be satisfied, supposing (as in the theory of hydraulic jumps in single
and two-layer flows) that the flow profiles are unchanged so that F2 = F1 and f ′

2 = f1,
so that from (5) P0 = 1. As shown in Appendix D, the limiting value of Fr occurs in
the limit when there is no entrainment (P = 1), and when the downstream flow depth
is identical to that upstream (q = 1). In this limit, (7) gives

Fr∗ = 4

∫ 1

0

xf1(x) dx

/∫ 1

0

F 2
1 (x) dx, (22)

and (8) implies that the loss of energy flux E is zero. The value, Fr∗ = 2, found for
a two-layer flow by putting F1 = f1 = 1, is in accordance with the critical Froude
number required for a jump in the two-layer flows.

Equation (22) can be interpreted in more physical terms: Fr =Fr∗ when

U 2
1 /(g∆h1) = 4

∫ 1

0

xf1(x) dx

/ ∫ 1

0

F 2
1 (x) dx, (23)

or cross-multiplying and using (1) and (2), when∫ H

0

[ρ0u
2
1(z)/2] dz = g

∫ H

0

[ρ1(z) − ρ1(H )] z dz, (24)

with H = h1 and where u1(z) is the upstream velocity. The Froude number exceeds
Fr∗ when ∫ H

0

[ρ0u
2
1(z)/2] dz > g

∫ H

0

[ρ1(z) − ρ1(H )] z dz, (25)
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or when the KE is greater than the relative potential energy, both energies being
calculated per unit horizontal area. Integrating by parts, (25) can also be written as∫ H

0

[
u2

1(z) − z2N2
1 (z)

]
dz > 0, (26)

where N1(z) is the buoyancy frequency.
It is necessary that the Froude number Fr∗ must be exceeded if a transition is to

occur. It is not, however, always the smallest Fr required for a stable jump, as shown
in the next section.

4. Selected examples of the upstream flow and wave propagation
4.1. The two examples

To demonstrate the application of the analysis, and to provide some representative
results, we choose as specific examples two upstream flows represented by F1 and f1,
respectively, that are continuous and, for simplicity, with velocity and density profiles
that are identical.

The ‘η profile’ is defined as

F1(x) = f1(x) =

{
1, if 0 � x � η � 1,

(1 − x)/(1 − η), if η � x � 1,
(27)

where x = z/h1. This has discontinuous gradients at x = η and x = 1, and provides
examples of flow ranging from a uniform gradient extending to z = 0 when η =0,
to a two-layer structure when η = 1. Profiles for η = 0 and η = 0.4 are shown in
figure 3(a, b), respectively, these being values of η selected for later study.

The minimum Richardson number of the η profile is

min(Ri1) = 2(1 − η)/Fr. (28)

Although large for relatively small values of Fr, min(Ri1) is equal to 1/4 when
Fr =8(1 − η), indicating possible instability in the upstream flow at greater values
of Fr. (The flow given by (27) with η = 0 is however found to be stable to small
disturbances for all Ri � 0.) The limiting Froude number Fr∗ (see (22)) is given by

Fr∗ = 2(1 + η + η2)/(1 + 2η), (29)

as shown in figure 4; Fr∗ = 2.0, 1.73 and 2.0 when η = 0, 0.4, and 1.0, respectively
(the latter being the two-layer flow). From (28), min(Ri1) = 2(1 − η)/Fr∗, or 1.0 and
0.692 when η =0 and 0.4, respectively. (When η < 0.7676, min(Ri1) > 1/4 so the
downstream flow at P = q = 1 is then dynamically stable, in accord with condition
(h).)

The second example, devised to remove the discontinuous gradients of the η profile,
is the ‘cosine profile’ defined as

F1(x) = f1(x) =

{
1, if 0 � x � l/h′

1 < 1,

{1 + cos[απ(x − l/h′
1)]}/2, if l/h′

1 � x � 1,
(30)

where x = z/h′
1 and α(1− l/h′

1) = 1. The derivatives of F1(x) and f1(x) are continuous.
For later comparison of results derived for the two profiles and the effects of the

discontinuous gradients in the η profile, h′
1 and l are chosen so that the slopes of F1
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1
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Figure 3. The matched η and corresponding two-layer profiles (dotted) with (a) η = 0 and (b)
η = 0.4. (c) The cosine profile corresponding to η = 0.4, which is given by the dashed line. The
large dots show density values specifying isopycnal surfaces, f1 = (1 − 0.1n), from n= 1 (the
lowest) to n= 10 (at z = h1), across which the volume and mass fluxes are calculated within
the transition in §§ 6.2–6.4.

and f1 in the two cases are equal at the level z = h1(1 + η)/2, the mid-height of the
uniform gradient in (27). This is so if

h′
1 = h1[2(1+η)+π(1−η)]/4, α = 2/[π(1−η)] and l = h1[2(1+η)−π(1−η)]/4. (31)

(The height of the uniform layer, l, is zero if η < 0.222, in which case f1(0) = F1(0) 	= 1.
Such cases are excluded from later discussion by selecting η = 0.4.) The vertically
integrated fluxes of both volume and mass in the η and equivalent cosine profiles are
then equal. The form of the cosine profile matched to an η profile with η = 0.4 is
shown in figure 3(c). The minimum Richardson number of the cosine profile is

min(Ri1) = 8(1 − η)/{Fr[2(1 + η) + π(1 − η)]}, (32)

where Fr is the Froude number, U 2
1 /g∆h′

1. The corresponding Froude number of the
cosine profile, Fr∗ =U 2

1 /g∆h′
1, is

Fr∗ = 2[4(1 + η)2 + (π2 − 8)(1 − η)2]/[8 − π + (8 + π)η], (33)
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so that Fr∗ = 1.56 when η = 0.4. (The Froude number of the equivalent η profile,
U 2

1 /g∆h1, is 1.83. From (27), min(Ri1) of the cosine profile when Fr = Fr∗ is 0.657
when η =0.4.)

Possible forms of the downstream flows are examined in the following sections,
taking their profiles to be similar to the upstream flows (in § 5) or having general
forms composed of a linear variation in z plus a series of sinusoidal terms (in § 6).
We shall compare results found for the continuously stratified flows with those for
matched two-layer flows that have bottom layers uniform in velocity and density and
of thickness h1(1 + η)/2 as shown in figure 3. For the selected upstream flows, this
allows assessment of the effect of representing a transition in a continuously stratified
flow by its two-layer equivalent. [At first sight it may appear that when, as chosen
here, the speed of the transition in the two-layer flow (the solution with η = 1) matches
that of the overlying layer (both being zero), we have a particular example of the
situation described by Thorpe (1974) and by Saffman & Yuen (1982) in which (with
the replacement of g by the reduced gravity, 2∆g) the solution is ‘exactly the same’ as
that of a single layer (even accounting for finite-amplitude effects!). The equivalence
depends, however, on there being hydrostatic pressure in the upper layer (which is
satisfied) and on Bernoulli’s equation holding in the lower layer (which is not satisfied
in a turbulent transition). In the given restricted conditions of zero speeds of both
the overlying flow and the jump, the shape of the interface in a two-layer jump will
indeed be identical to the free-surface shape of a hydraulic jump in a single layer, but
only in cases when jumps are weak with no generation of turbulence.]

4.2. Wave propagation in an η profile

The speed of long internal waves in flows of the form (27) can be found analytically
as outlined in Appendix E. When η < 2/3, there are upstream travelling waves if
Fr =U 2

1 /g∆h1 < 8(1 − η), = Frc, say, i.e. when min(Ri1) > 1/4; e.g. when Fr < 8.0
and 4.8 if η = 0 and 0.4, respectively. The curve Fr = Frc gives the maximum value
of Fr at which waves can propagate upstream; at values of Fr >Frc there are no
upstream travelling waves. The curve Fr = Frc for 0 � η � 1 is shown in figure 4,
together with some contours of (−c/U1), the speeds of the fastest (mode 1) upstream
travelling waves normalized with the flow speed U1.

4.3. A minimum Fr for a stable jump in an η profile

Except when η = 1, the values of Fr∗ are less than Frc (figure 4); they are in the
range of Fr in which upstream travelling internal waves can occur. Long upstream
travelling waves or columnar modes (McEwan & Baines 1974; Baines 1995) exist at
Froude numbers in the range Fr∗ < Fr < Frc, transferring energy upstream from a
stationary jump and modifying the upstream flow. As explained in Appendix E, the
long waves have properties that are in accord with those leading to a convergence
of characteristics and the formation of hydraulic jumps in single layers (e.g. Lighthill
1978). However (unlike the free-surface hydraulic jumps described in § 1 or jumps in
two-layer flows) when η < 1 the value of Fr∗ derived from the continuity equations
differs from that required for no upstream wave propagation; stratified flows support
an infinite set of wave modes, and a hydraulic jump corresponds to a transition where
the modes, in combination, lead to a change (here a stationary change) in the level
of isopycnal surfaces.

It follows that transitions formed with Fr∗ < Fr < Frc will be unstable. Stable
jumps in the stratified flows will occur only if momentum and energy loss by upstream
wave propagation is precluded from blocking and changing the upstream flow, i.e.
stable jumps will only be formed in flows with Fr � Frc(= 8.0 and 4.8 for η = 0 and
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Figure 4. The Froude numbers Frc and Fr∗ as functions of η for flows with η profiles. The
curve Frc is the boundary where c/U1 = 0 − (§ 4.2). Upstream-propagating waves are possible
if Fr < Frc . The curves numbered (n =) − 1, −2, . . . , −5, show the non-dimensionalized
speeds, −c/U1 = 10n, for long upstream-travelling mode 1 waves, where U1 is the maximum
flow speed in the η profile. Long mode 2 waves also occur, but only at smaller Fr than
the mode 1 waves. No internal waves or columnar modes can propagate upstream, ahead
of a stationary hydraulic jump, if Fr � Frc . The curve Fr∗ denotes the Froude number
above which the conservation equations at a transition can be satisfied with a positive loss
of energy flux (§§ 3 and 7.1(i)). Fr∗ is less than Frc except in the two-layer case, η = 1, when
the two values coincide. The dashed curve (continuing along Frc to the point Fr =8 and
η = 0) is Fr = 8(1 − η), the value of Fr when the min(Ri) = 1/4. It coincides with Frc when
η < 2/3. The curve Fr = Frc may be regarded as the lower boundary of Fr for the existence
of ‘stable’ hydraulic jumps. For values of Fr < Frc hydraulic jumps will decay through the
upstream propagation of long internal waves or columnar modes. The region where stable
jumps are possible, Fr > Frc , is marked ‘supercritical’. Since here min(Ri) < 1/4, the flow may
be unstable to Kelvin–Helmholtz instability.

0.4, respectively). As is shown in § 6, the jump amplitude and loss of energy flux may
be relatively large at these Froude numbers, implying that jumps may inevitably be of
substantial size and cause significant mixing. The implications are discussed further
in § 7.1.

5. ‘Similar’ and ‘shape-preserving’ transitions
Before engaging in a discussion in § 6 of the possible forms of flow downstream of

a transition from the upstream η or cosine profiles, we return briefly to the general
profiles (1) and (2) and consider the implications of assuming that the downstream
profiles are similar to those upstream. This may be expected for small-amplitude
transitions when the Froude number is only slightly greater than Frc, and will
provide values for comparison with later calculations in § 6. Two distinct cases are
possible, and are here distinguished by the titles ‘similar’ and ‘shape-preserving’.

First, the upstream and downstream velocity and density profiles may be ‘similar’
in the sense that F1(x) = F2(x) and f1(x) = f2(x), thus dictating that, since f1(0) = 1,
the value of f2(1) = 1 so and δ = 1; the fluid density on the horizontal boundary is
conserved through the transition.

The diapycnal fluxes within the transition region were discussed in § 2.4. The
density, ρA, on the isopycnal surface at height z1 upstream and z2 downstream is
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the same on the two sides of the transition and so, from (2), f1(z1/h1) = f2(z2/h2).
But f1(x) = f2(x), and f1(x) is monotonic, and consequently x1 = z1/h1 = z2/h2 = x2.

Equation (B 2) becomes QA = (U1h1−U2h2)
∫ x1

0
F1 dx. If there is no entrainment, Q =0

(and P =1), and (A 1) gives U1h1 =U2h2, so QA = 0. Similarly from (B 5), FA = 0
in similar flows when Q =0: for such flows there is no volume or mass flux across
isopycnal surfaces within the transition which, lacking such diapycnal transports,
cannot be regarded as being, in the usual sense, turbulent. Isopycnals simply bend
and remain continuous within the rather passive transition. In ‘similar’ flows with no
entrainment (P = 1), energy cannot be lost by turbulence within the transition region,
only by the downstream radiation of internal waves.

Second, there are ‘shape-preserving’ flows in which F2 = F1 and f ′
2 = f1 (instead of

f2 = f1). In this case δ is not necessarily equal to 1; the density profile remains the
same but the range of density is reduced. If also f1 =F1, as in the example profiles
(27) and (30), P0 = 1 and (7) gives

Fr = qFr∗(q
2 − P )/[2P (q − P 2)], (34)

with δ = 1/P , whilst from (8) the non-dimensional rate of loss of energy flux in the
transition is

E=Fr

∫ 1

0

F 3
1 dx(1 − P 3/q2)/2 − 2(q − 1)

[∫ 1

0

xF 2
1 (x) dx+

∫ 1

0

F1(x)

∫ 1

x

F1(y) dy dx

]
.

(35)

Differentiating with respect to P, it can readily be shown that E is a maximum
at P = 1 or (from (4)) when δ = 1, for all shape-preserving transitions. (This is in
accord with Appendix C. Equations for E for the η-profile and the cosine profile in
shape-preserving flows are given in Appendix F. In both cases E is positive if q > 1,
but < 0 if q < 1, implying that an increase in layer thickness is required for a loss in
energy flux.)

We apply these results to the η profiles. Equations (34) and (35) provide relations
between q, P and Fr , and between E and q, P and Fr , respectively. (For the two-layer
flow given by the η profile with η = 1, with no entrainment, (34) and (35) reduce to
Fr = q(q + 1) and E = Fr1/2(q − 1)3/2q , respectively, which reduces to the form for
a single layer flow given by Lighthill (1978) when ∆ =1.) Figure 5(a, b) shows the
locus of points of constant Fr in the (q–P) plane when η = 0 and 0.4, respectively,
together with regions where Fr < 0 and E < 0 (excluded by conditions (g) and
(f )), and the lines min(Ri2) = 1/4 and S = 1, corresponding to conditions (h) and (i ),
respectively. The maximum value of P on a line of constant Fr is given using (19)
and, for example, when η = 0 is found to be

Pm = [(1 + Fr)/3](2/Fr)2/3 when qm = [(1 + Fr)/3](2/Fr)1/3. (36)

Evaluation of the integrals and substitution in (35) gives

E = Fr/8 + 5/12 − 24/3(1 + Fr)/(9Fr1/3), (37)

which is positive for all Fr � Fr∗ = 2, so giving the rate of loss of energy when
the entrainment rate P is greatest. However, as seen for example in figure 5(a), the
maximum values of P on the curves of constant Fr are in a region where S > 1 to the
left of the line S =1 where the flow is unstable to a further transition (condition (i )).
The maximum ‘allowable’ values of P are where the curve S = 1 intersects the curves
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Figure 5. The locus of points of constant Fr = 3, 5 and 7 (labelled lines) and constant E
(dashed lines) in the (q–P ) plane for shape preserving transitions with (a) η = 0 and (b) η = 0.4.
S = 1 is shown as a dotted line and min(Ri2) = 1/4 as a dot-dash line. S is � 1 to the right of
S = 1 and min(Ri2) > 1/4 is also to the right of min(Ri2) = 1/4. Fr < 0 in the hatched region
and E < 0 close to the P-axis, both regions where no jumps are possible. The condition (f ) for
a physically possible transition (with E � 0) and stability conditions (h) and (i ) are satisfied
at relatively large values of q.

of constant Fr. (The corresponding values of P, q and E for selected Fr are plotted
later in figure 7.)

But what happens when Fr becomes substantially greater than Fr∗, particularly
when Fr > Frc and when the downstream flow profiles differ from those upstream
because of mixing in the transition? In the following section it should be borne in
mind that when Fr∗ < Fr <Frc jumps and downstream flows are ‘virtual’ in the sense
that transitions will collapse through the radiation of long internal waves travelling
upstream. Analysis of such flows are however included to demonstrate the trends that
follow the use of the conservation equations even though the solution of the Taylor–
Goldstein equation (Appendix D) implies long waves will destabilize transitions.

6. Finding the downstream flow profiles
6.1. The representation of the downstream flow

The form of the downstream flow following a transition when Fr > Fr∗ is unknown,
although the profiles, f ′

2 and F2, must conform to the physical constraints imposed on
the downstream flow. For generality we seek downstream profiles that have density
and velocity profiles expressed as the sum of a linear variation in height plus terms
of a truncated series of sinusoidal terms:

f ′
2(x = z/h2) = 1 − x +

m=4∑
m=1

am sin(mπx) (38a)

and

F2(x = z/h2) = 1 − x +

m=4∑
m=1

bm sin(mπx), (38b)

which satisfy the conditions imposed in § 2.1 that f ′
2(0) = 1, f ′

2(1) = 0, F2(0) = 1 and
F2(1) = 0. The constants, am and bm, are to be found, subject to the conservation and
other conditions, (c)–(k ), listed in §§ 2.2–2.4.
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The number of terms in the sine series is restricted to 4 simply to make
computational time manageable. The method for seeking numerical solutions is
outlined in Appendix G.1. For q and Fr slightly in excess of 1 and Fr∗, respectively,
the downstream profiles are likely to be similar to those upstream, as suggested in § 5.
The magnitude of the constants, am and bm, m =1–4, when the series (38) are fitted
to the η and cosine upstream profiles, (27) and (30), respectively, and their goodness
of fit, are discussed in Appendix G.2. The four-term sine series provides a fairly good
fit to the given profiles when η � 0.7, and provides an indication of the magnitudes
expected of the constants when Fr is near Fr∗.

We shall examine the forms of the downstream flow for η profile upstream flows
with η = 0 and 0.4, and for the cosine profile corresponding to η = 0.4. As mentioned
in § 2.5, downstream flows are to be sought for specified upstream flows at extreme
values of q, P and E. For selected η and Fr and a downstream flow satisfying the
conservation and other conditions, (7) provides a relation between Fr, q and P, or
a relation between q and P at specified Fr. Extreme values of, say, q at constant Fr
can be found by varying P. Variation of the downstream profiles (tested to ensure
they satisfy the imposed conditions – Appendix G.1) may then be made to find those
corresponding to extreme values of q for fixed Fr, e.g. min(q)|η,F r =const, for the given
upstream flow and calculated over the physically possible range of P and for all
physically possible downstream flows. Downstream profiles giving extreme values of
P, e.g. max(P )|η,F r = const, can similarly be found. The variation of the loss in energy
flux E is found through (8) which relates E to Fr, q and P. Using (7) at specified Fr,
(7) and (8) provide an expression for E in terms of either q or P. Again, extreme
values and corresponding downstream profiles, this time of E at given Fr, can be
found by first setting P and determining q in terms of a constant Fr by (7), hence
E from (8) subject to the imposed conditions, then by varying the downstream flow
to give, e.g. max(E)|η,F r =const. The particular cases chosen for examination at selected
values of Fr are where

(i) the loss in energy flux E is greatest: max(E)|η,F r =const;
(ii) the entrainment parameter P is greatest: max(P )|η,F r = const;
(iii) the jump amplitude q is smallest: min(q)|η,F r =const; and
(iv) the loss of energy flux is greatest but there is no entrainment:

max(E)|η,F r=const,P=1;

where in each case the optimal downstream flow must satisfy the imposed conditions.
Other extreme cases might be chosen, but these four are useful for comparative
purposes and to allow a brief examination of the forms of possible downstream flow,
at least where solutions have been found. Some of the main features characterizing
the downstream flow are described in the following sections and related figures.
Comparisons are made with the values estimated for shape preserving and for ‘similar’
downstream flows no entrainment and no mixing within the transition region that
are described in § 5. We begin with the downstream flow resulting from an upstream
flow specified by (27), an η profile, with η = 0.

6.2. Downstream flows with η = 0 upstream (Fr∗ = 2.0, F rc = 8.0)

Figure 6 shows the profiles of density (f ′
2) and velocity (F2) at four values of Fr

extending to a value >Frc, when η = 0 in the four extreme cases. Although identical
in the upstream flow, the downstream density and velocity profiles are different from
one another. In the upstream profiles (shown at the left of each part of the figure)
the gradients in the moving layer are uniform, but in cases (i), (ii) and (iv) the
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Figure 6. The profiles of downstream density (f ′
2 (a, c, e, g)) and velocity (F2 (b, d, f, h))

at Fr = 3, 5, 7 and 9 when η = 0, in (a, b) case (i): E is maximum at the selected Fr; (c,
d ) case (ii): P is greatest; (e, f ) case (iii): q is minimum; and (g, h) case (iv): E is greatest
subject to P = 1 (no entrainment; there is no solution at Fr = 9 in this case). The upstream
profile (but plotted as a function of z/h1) is at the left of each set of profiles. The height of
the upstream flow, q−1 = h1/h2, is marked by dashed lines on the f ′

2 profiles; q is shown in
figure 7(a). The profiles of F2 are normalized by dividing by the maximum value, and values of
U2/U1, the ratio of the downstream to upstream flows at z =0, are given in table 1. (The ratio
of the corresponding relative densities at z = 0 is δ, given in figure 7d.) Arrows on the velocity
(F2) curves show the location and value of the minimum Richardson number, min(Ri2).

overall tendency in the downstream flow is towards the development of a two-layer
structure, most pronounced in case (iv), whilst in case (iii) the gradients are reduced at
z/h2 ∼ 0.6, enhanced above, and remain almost unchanged near z/h2 = 0. The density
downstream of the transition near the horizontal boundary at z/h2 = 0 is less than
that upstream because δ < 1, as will be seen in figure 7(d ). The profiles of velocity F2

are normalized by dividing by the maximum value, and values of U2/U1, the ratio of
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Figure 7. Values of (a) q, (b) P, (c) E and (d ) δ, when η = 0. The points at selected Fr represent:
x – case (i), E is maximum; � – case (ii), P is greatest; � – case (iii), q is smallest; � – case (iv),
E is maximum subject to P = 1 (no entrainment). The limiting Froude numbers, Fr∗ = 2.0 and
Frc =8.0, are indicated. The dashed lines correspond to shape-preserving transitions when P
is maximum. The dotted lines correspond to ‘similar’ upstream to downstream flow transitions
when P = 1; and the full lines are values for the corresponding two-layer flow (illustrated in
figure 3a) with P = 1. The uncertainty in Fr is ±0.01 (Appendix F.1) and uncertainties in q, P,
E and δ are about 0.1, 0.01, 0.001 and 0.1, respectively, values determined by variation in the
coefficients am and bm by their level of uncertainty, 0.01.

the downstream to upstream flows at z = 0, are given in table 1. The interested reader
will observe a number of physical processes involved in the transition. For example,
the region of uniform density, f ′

2 ∼ 0 at z/h2 > 0.6, in cases (i) and (ii), figures 6(a,
c), respectively, is fluid that has been entrained from the overlying layer and which,
downstream of the jump, is in motion; F2 > 0.

No downstream flow satisfying the flux condition (k ) has been found when Fr = 9
and when there is no entrainment (case (iv)); no values of Γ exceed 0.185. (A similar
result, but settling in at a lower Fr, is found when η =0.4: § 6.3.) Entrainment appears
‘inevitable’ for flows with relatively large Fr in conditions in which all the dissipation
of energy flux must occur within a transition. (As noted in § 5, there is a solution
at P = 1, with no entrainment, when the downstream flow is similar in form to that
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Case U2/U1 U2/U1 U2/U1 q1/2

Fr (η = 0) (η = 0.4) (cosine; η = 0.4) (η = 0.4) (η = 0.4) q

3 (i) 0.592 0.801 0.700 1.26 1.54
5 (i) 0.442 0.584 0.595 1.50 2.10
7 (i) 0.361 0.602 0.584 1.62 3.44
9 (i) 0.329
3 (ii) 0.554 0.839 0.786 1.22 1.50
5 (ii) 0.450 0.640 0.609 1.44 2.14
7 (ii) 0.387 0.605 0.582 1.62 3.44
9 (ii) 0.421
3 (iii) 0.929 0.936 – 1.29 1.20
5 (iii) 0.933 0.873 – 1.66 1.47
7 (iii) 0.848 0.834 – 1.88 1.80
9 (iii) 0.816
3 (iv) 0.517 0.603 0.609 1.40 1.36
5 (iv) 0.401 0.463 0.465 1.96 1.76
7 (iv) 0.338 No solution 0.418 No solution No solution
9 (iv) No solution No solution No solution No solution No solution

Table 1. The ratios, U2/U1, of the downstream to upstream flows at z = 0 and at various Fr
in the extreme cases (i)–(iv) defined in § 6.1, and the ratio of the downstream and upstream
heights of the central isopycnal, q1/2, defined in § 6.3 when η = 0.4. Values of q = h2/h1, are
given for comparison. ‘No solution’ mean that no solutions are found that satisfy condition
(k ): Γ ∼ 0.2.

upstream, but in this case the transition is not turbulent and energy cannot be lost
through mixing within the transition region, only through the radiation of internal
waves.)

Values of S and the coefficients ai and bi in (38) for the respective downstream
flows are given in table 2. In cases (i) and (ii) the extreme flows are generally close
to the limit imposed by condition (h), with min(Ri2) near 0.25, the smallest values
of Ri2 (marked on the F2 profiles) being towards the top of the flowing region
where entrainment is evident. In some cases (e.g. case (i) at Fr = 3 and case (iii))
the table shows S is also close to its bounding value of unity imposed by condition
(i ). Relaxation of condition (h) (that of min(Ri2) � 1/4) leads to downstream flows
with larger rates of loss of energy flux, and with condition (i ) (S � 1) generally
providing a limiting constraint. When there is no entrainment (case (iv); figure 6h),
the downstream flow has a pronounced shear layer at the mid-depth (z/h2 ∼ 0.5)
and signs of a jet-like structure below. min(Ri2) is substantially greater than 0.25 and
S < 1; the flux conditions (j ) and (k ) then provide limiting constraints. (The effect of
the flux conditions is made evident in comparing the solutions for the downstream
flows with and without these conditions. Although the removal has a relatively small
effect on the density profiles, it results in more uniform slopes in the velocity below
z = h2 in case (i), and in case (ii) low shear layers develop at mid-depth. In case (iv),
the downstream flows have min(Ri2) near 0.25 and S is substantially less than unity in
the absence of the flux conditions: it is condition (h) that provides a limiting control
on the downstream flows.)

The coefficients, am and bm, in table 2 for η =0 generally decrease in magnitude as
m increases, suggesting convergence, but in some case (e.g. for |am| in case (iii) and for
bm in case (iv)) values with m =2 exceed those with m =1, the larger second harmonic
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Fr Case η/cos S a1 a2 a3 a4 b1 b2 b3 b4

3 (i) 0.0 0.99 −0.12 0.12 −0.02 −0.03 0.26 0.15 −0.11 −0.045
5 (i) 0.0 0.89 −0.19 0.11 0.025 −0.005 0.27 0.17 −0.045 0.015
7 (i) 0.0 0.89 −0.325 0.06 0.075 0.02 0.175 0.24 0.09 −0.01
9 (i) 0.0 0.84 −0.37 0.01 0.04 0.01 0.18 0.225 0.07 0
3 (ii) 0.0 0.96 −0.025 0.20 0.02 −0.03 0.26 0.15 −0.005 −0.06
5 (ii) 0.0 0.90 −0.31 0.08 0.08 0.02 0.03 0.18 0.10 0.02
7 (ii) 0.0 0.89 −0.325 0.06 0.075 0.02 0.10 0.16 0.105 0.02
9 (ii) 0.0 0.90 −0.41 −0.03 0.03 0.01 −0.08 0.06 0.01 0.025
3 (iii) 0.0 0.98 0.08 −0.10 0.06 −0.02 0.02 −0.14 0.09 0
5 (iii) 0.0 0.97 0.06 −0.14 0.045 −0.02 −0.13 −0.09 0.045 −0.02
7 (iii) 0.0 1.00 0.06 −0.14 0.02 −0.03 −0.15 −0.03 −0.01 −0.01
9 (iii) 0.0 0.98 −0.015 −0.165 0.01 −0.03 −0.18 −0.06 −0.01 −0.01
3 (iv) 0.0 0.77 −0.06 0.175 0.01 −0.03 0.16 0.32 −0.05 −0.10
5 (iv) 0.0 0.62 0 0.16 −0.01 −0.015 0.185 0.34 −0.035 −0.085
7 (iv) 0.0 0.56 0.105 0.115 −0.05 0 0.30 0.36 −0.10 −0.11
9 (iv) 0.0 No solution
3 (i) 0.4 0.88 0.125 0.17 −0.04 −0.01 0.20 0.07 −0.04 0.02
5 (i) 0.4 0.86 0.025 0.19 0.02 −0.04 0.355 0.05 −0.03 −0.06
7 (i) 0.4 0.90 −0.275 0.10 0.095 0.025 −0.04 0.035 0.08 0.035
3 (ii) 0.4 0.96 0.125 0.17 −0.04 −0.01 0.175 0.055 −0.02 0.03
5 (ii) 0.4 0.92 −0.03 0.18 0.04 −0.035 0.215 0.07 0.035 −0.05
7 (ii) 0.4 0.97 −0.29 0.09 0.10 0.03 −0.06 0.03 0.095 0.045
3 (iii) 0.4 0.96 0.34 −0.01 0.01 −0.01 0.18 0.04 0.04 −0.03
5 (iii) 0.4 1.00 0.27 −0.03 0.08 −0.05 0.06 0.10 0.045 −0.025
7 (iii) 0.4 0.95 0.21 −0.045 0.07 −0.03 −0.04 0.10 0.035 0
3 (iv) 0.4 0.69 0.34 0.025 −0.05 0.01 0.60 0.015 −0.14 0.11
5 (iv) 0.4 0.50 0.36 −0.075 0 0.01 0.62 0.04 −0.12 0.125
7 (iv) 0.4 No solution
3 (i) cos 0.96 0.125 0.17 −0.04 −0.01 0.40 0.055 −0.07 0.045
5 (i) cos 0.90 0.025 0.17 0.02 −0.03 0.355 0.02 −0.02 −0.03
7 (i) cos 0.92 −0.275 0.10 0.095 0.025 0.005 0.055 0.05 0.015
3 (ii) cos 0.96 0.025 0.20 −0.02 −0.04 0.175 0.115 −0.04 −0.035
5 (ii) cos 0.91 −0.075 0.17 0.05 −0.025 0.215 0.10 0.055 −0.045
7 (ii) cos 0.94 −0.29 0.09 0.10 0.03 −0.015 0.05 0.085 0.035
3 (iv) cos 0.66 0.28 0.05 −0.05 0.02 0.52 0.045 −0.14 0.07
5 (iv) cos 0.47 0.315 −0.045 −0.02 0.02 0.575 0.00 −0.11 0.135
7 (iv) cos 0.48 0.415 −0.13 0.02 0 0.545 0.12 −0.80 0.095

Table 2. Values of the jump stability factor S and the coefficients am, bm in (38), for the
upstream η profiles (with η = 0 and 0.4) and the cosine profile (cos) equivalent to η =0.4 and
at various Fr in the extreme cases (i)–(iv) defined in § 6.1. ‘No solution’ means that no solutions
are found that satisfy condition (k ): Γ ∼ 0.2.

being required to represent the substantial changes from the uniform gradients of the
upstream profiles as flow passes through a transition.

Figure 7 shows values of q, P, E and δ at several values of Fr in the extreme
cases, together with values for ‘similar’ upstream and downstream flows with P = 1
(when there is no entrainment and no mixing in the transition region as shown in § 5)
and for shape-preserving transitions when the entrainment, given by P, is maximum
(subject to S � 1; see § 5 and figure 5a). As in single-layer flows, values of the jump
amplitude q and the rate of loss of energy flux E increase with Fr in each case. The
‘similar’ and shape preserving transitions underestimate the possible jump amplitudes
and rates of energy loss. The values of q and E in the corresponding two-layer flow



Turbulent hydraulic jumps in a stratified shear flow 327

(illustrated in figure 2a) are shown for comparison in figure 7(a, c). The rates of loss
of energy flux, E, for the equivalent two-layer flows overestimate those of the η =0
flows.

Entrainment P increases with Fr (figure 7b). Values of P in case (ii) are the greatest
that can be found consistent with the applied conditions, and these are generally only
slightly larger than those in case (i) (maximum E) and within 0.5 % of Pm. There is no
entrainment or mixing in the two-layer flow and, in this case, P =1 in figure 7(b) and
δ = 1 in figure 7(d ). There is relatively little entrainment when the jump amplitude, q,
is minimized (case (iii)). The relative reduction in density, δ, at z = 0 caused by mixing
in the transition region, decreases as Fr increases from 3 to 7 in case (i) (and in case
(iv)) and then increases at Fr = 9, but is smaller – indicating more mixing – in case
(ii), lying between 0.8 and 0.9 when Fr = 3–7. (Removal of the flux condition results
in solutions for the downstream flow with larger rates of loss of energy flux E and
greater entrainment rates P, but relatively little change in jump amplitudes q.)

Figure 8 shows the non-dimensional diffusive flux, F given by (B 7), and the
advective flux, Q∗ given by (B 3), across the 10 selected isopycnal surfaces, f1 = (1 −
0.1n), n= 1, 10, marked in figure 3, as they pass through the transition region. The
non-dimensionalized (positive) diffusive fluxes increase with Fr. The diffusive flux
tends to zero at the bottom (through which there can be no flux) and at the top of
the flowing layer. The upward non-dimensional advective flux is equal to (1 − P ),
which is �0, at isopycnal level n= 10 marking the top of the flowing layer. In case
(iii), P = 1 and the flux is zero at isopycnal level 10, and the diapycnal flux is very
close to zero above level 7. The advective fluxes are generally positive at level 1 near
the horizontal plane and change sign at level n= 4±2. As noted in regard to figure 7,
δ < 0.9 for Fr = 3–7 in case (ii) and there is no isopycnal surface, n= 1, with f1 = 0.9,
downstream. Mixing of the relatively dense fluid in the near-bottom region with that
above it results in a decrease of its density within the transition, and the advective
flux in the upstream flow must all pass upwards through the isopycnal surface in
the transition region. As a result, the ‘non-dimensional’ advective fluxes in figure 7(b)
(right) for Fr = 3, 5 and 7 are equal at level n= 1. Both F and Q∗ are relatively small
for Fr =3 and 5 at n= 1 (or near z =0) in case (iii); the density profiles (figure 6c)
remain similar to those upstream and δ ∼ 1 (figure 7d ).

We now examine the downstream flow when the upstream flow is specified by (22)
with η = 0.4 in which the density and velocity are uniform below the level z/h1 = 0.4.

6.3. Downstream flows with η = 0.4 upstream (Fr∗ = 1.73; Frc =4.8)

The downstream density and velocity profiles when η = 0.4 are shown in figure 9
with Fr extending to values >Frc. Although still reflecting the uniformity of the
upstream flow below z/h1 = η, the general trends are like those at η = 0 (figure 6).
The case (i) and (ii) curves are similar to one another. The density profiles have a
two-layer structure with relatively uniform regions near z/h2 = 0 and z/h2 = 1, and a
central region of higher gradient that becomes closer to the horizontal boundary as Fr
increases. As seen in figure 10(d ), however, δ is close to unity implying, from (4), that
P ≈ P0 and, unlike the case when η = 0, mixing does not reduce the density at z =0 by
more than 0.1 %; in this case there is a layer of uniform density in the upstream flow
adjoining the boundary at z = 0 that is not totally eroded in the transition. The velocity
profiles are less regular than the density whilst maintaining a relatively low gradient
near z/h2 = 0 and a shear near z/h2 = 1 where Ri2 has its lowest values, near 0.25.
Values of S given in table 2 are significantly less than unity, implying that generally the
condition (h) of dynamical stability limits the extreme downstream flow rather than
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Figure 8. The non-dimensional upward diffusive and advective diapycnal fluxes, F and Q∗,
given by (B 7) and (B 3), respectively, across the 10 selected isopycnal surfaces (numbered
from n= 1, the lowest, to n= 10 at z = hi) which are marked as dots in figure 3(a), as they
pass through the transition region when η = 0. (a) case (i); (b) case (ii); (c) case (iii); and (d )
case (iv). The fluxes are shown at: , Fr = 3; x, Fr = 5; �, Fr = 7; and � Fr =9. The upward
advective flux Q∗ at the upper (n= 10) isopycnal is equal to (1 − P ). The uncertainty in the
flux values is about 0.01.
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Figure 9. The profiles of downstream density (f ′
2 (a, c, e, g)) and velocity (F2 (b, d, f, h)) at

Fr =3, 5 and 7 when η = 0.4, in (a, b) case (i): E is maximum at the selected Fr; (c, d ) case (ii):
P is greatest, (e, f ) case (iii): q is minimum and (g, h) case (iv): E is greatest subject to P = 1
(no entrainment). The upstream profile (but plotted as a function of z/h1) is at the left of each
set of profiles. The height of the upstream flow, q−1 = h1/h2, is marked by dashed lines on the
f ′

2 profiles; q is given in figure 10(a) and table 1. The profiles of F2 are normalized by dividing
by the maximum value, and values of U2/U1, the ratio of the downstream to upstream flows
at z = 0, are given in table 1. (The ratio of the corresponding relative densities at z = 0 is δ,
given in figure 10d.) Arrows on the velocity (F2) curves show the location and value of the
minimum Richardson number, min(Ri2). As mentioned in § 4.2, the minimum upstream Ri is
<1/4 if Fr > 4.8.
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� – case (iv), E is maximum subject to P = 1. The limiting Froude numbers, Fr∗ = 1.73 and
Frc =4.8, are indicated. The dashed lines correspond to shape-preserving transitions when P
is maximum. The dotted lines correspond to ‘similar’ upstream to downstream flow transitions
when P = 1; and the full lines are values for the corresponding two-layer flow (illustrated in
figure 3b) with P = 1. The uncertainties in values are as given in the caption of figure 7.

the condition (i) of no possible further transition. (Case (i) with Fr = 3 is an exception:
neither Ri2 nor S are near their limits of 1/4 and 1. This is true even if the diapycnal
flux conditions (j ) and (k ) are removed. A jet-like structure develops in the upper part
of the layer when Fr = 7 and when the constraint (h), min(Ri2) � 1/4, is removed.)

At Fr = 3, the profiles of case (iii) are not dissimilar from those upstream, but the
density becomes more uniform at z/h1 ∼ 0.6, and the region of higher velocity more
confined near z =0 at higher Fr.

The height of the isopycnal with the mean density, that with f1 = 0.5, at the centre
of the upstream density gradient, is h1(1 + η)/2. Downstream, the isopycnal is at
f2(≈ f ′

2 since δ ≈ 1) = 0.5. Its height can be found from the profiles of figure 9. The
ratio of the downstream and upstream heights, q1/2, of this isopycnal is given in
table 1 and, like q, increase with Fr. Since, moreover, there is a lack of symmetry of
the downstream profiles of density and velocity, f ′

2 and F2, respectively, about their
values of 0.5 in the moving layer, in each of the four cases the mixing that occurs
in the transitions is not symmetrical as in Kelvin–Helmholtz instability at a stratified
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interface between two deep layers. Mixing in the transition is not localized to the
region of density gradient and velocity shear, but is affected by the presence of the
boundary at z = 0.

As mentioned in § 6.2, no downstream flow satisfying the flux condition (k ) has
been found in case (iv) when Fr = 7 or 9 when there is no entrainment; there are
no values of Γ that exceed 0.15 and 0.092 when Fr =7 and 9, respectively, and
entrainment appears inevitable at these values of Fr. At Fr = 3 and 5, the density
profiles in case (iv) (figure 9g) remain broadly similar to the upstream profiles with
an upper region of gradient but with a relatively deeper lower uniform region. The
velocities have similar forms but with greater evidence of higher harmonics; the b3

coefficients in table 2, although substantially less than b1, are larger than in other
cases. In each case the parameter S is less than unity but min(Ri2) ∼ 0.25 in the region
of high shear and density gradient; condition (h) limits the extreme downstream flow.
The exception is case (iii) where both S and min(Ri2) appear to provide limits to the
possible downstream flows.

The variation of q, P and E with Fr (figure 10a–c) shows trends similar to those for
η =0, but the range of E is substantially increased, and the two-layer approximation
provides more representative values for cases (i) and (ii). In the lower values of Fr, the
‘similar’ downstream profile with P =1 provides an approximate guide to the values
of q and E, although not to P. Except for the shape preserving transition when P is
maximum, δ ≈ 1 in figure 10(d ); the density at z =0 remains close to its upstream
value in z/h1 � η.

The non-dimensional diapycnal fluxes are shown in figure 11. These have values
comparable to those in figure 8 for η = 0. The greatest difference is because there is
an upstream near-boundary layer of uniform density which is not completely eroded
in the transition when η = 0.4; the density near z = 0 is only slightly reduced in
the transition (δ ≈ 1). Consequently although there is an upward advective flux Q∗
through the isopycnal at level n= 1, this isopycnal does survive in the transition and
emerges in the downstream flow when η = 0.4.

6.4. Downstream flows of cosine form corresponding to η = 0.4

Figures 12–14 show the functions and values for the upstream cosine profiles of density
and velocity (30) corresponding to figures 9–11 when η = 0.4 and Fr > Fr∗ = 1.83.
(Case (iii) is not shown. The other cases are sufficient to demonstrate the main
conclusion, one of similarity to the upstream η profiles.) The values, Fr, q and E,
are taken to be those equivalent to flows with η =0.4, for easy comparison, e.g. q in
figure 13(a) is equal to h2/h1, not h2/h′

1.
The density and velocity profiles (figure 12) are very similar to those of figure 9: the

discontinuities in density and velocity gradients of the η profiles, absent in the cosine
profiles, make little difference to the shape of the downstream flows. An exception
is that, in case (iv), there is a solution at Fr = 7. (In this case, the density of the
downstream flow at the boundary, z = 0, proportional to δ, is substantially less than
unity (figure 13d ), implying that internal mixing has reduced the density.) No solution
has been found, however, with Γ > 0.12 when Fr =9. Condition (k ) is failed, again
supporting the notion that transitions at large Fr must involve entrainment. With this
exception, the values of q, P and E displayed in figure 13(a–c), are similar to those
of the corresponding figure 10, and the diapycnal fluxes F and Q∗ are also similar
(figure 14); the discontinuities in the η profile make little difference to the amplitude
of the hydraulic jump, to the loss in energy flux or to the diapycnal fluxes within the
transition region.
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Figure 11. The non-dimensional upward diffusive and advective fluxes, F and Q∗, given by (B
7) and (B 3), respectively, across the 10 selected isopycnal surfaces (numbered from n= 1, the
lowest, to n= 10 at z = hi) which are marked in figure 3(b), as they pass through the transition
region when η = 0.4. (a) case (i); (b) case (ii); (c) case (iii); (d ) case (iv). The fluxes are shown
at: o, Fr = 3; x, Fr = 5; and �, Fr =7. The upward advective flux Q∗ at the upper isopycnal
(n=10) is equal to (1 − P ). The uncertainty in the flux values is about 0.01.
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Figure 12. The profiles of downstream density (f ′
2 (a, c, e)) and velocity (F2 (b, d, f )) at Fr = 3,

5 and 7 for the cosine upstream flow equivalent to the η profile when η = 0.4, in (a, b) case (i):
E is maximum at the selected Fr; (c, d ) case (ii): P is greatest and (e, f ) case (iv): E is greatest
subject to P = 1 (no entrainment). (Case (iii) is not shown.) The upstream profile (but plotted
as a function of y1 = z/h′

1 as defined in (31)) is at the left of each set of profiles. The height

of the upstream flow, q−1 =h′
1/h2, is marked by dashed lines on the f ′

2 profiles; q is shown
in figure 13(a). The profiles of F2 are normalized by dividing by the maximum value, and
values of U2/U1, the ratio of the downstream to upstream flows at z = 0, are given in table 1.
(The ratio of the corresponding relative densities at z =0 is δ, given in figure 13d.) Arrows
on the velocity (F2) curves show the location and value of the minimum Richardson number,
min(Ri2).

7. Conclusion
7.1. Discussion of results

We have examined and compared the downstream profiles of density and velocity
and the related parameters (q, P, E and δ) and diapycnal fluxes (F and Q∗) for
hydraulic transitions, taking as particular examples those occurring in the upstream
flows shown in figure 3 and defined by (27), with η = 0 and 0.4, and (30) with η =0.4,
under a set of conditions ((c)–(k )) relating to continuity, to stability and to mixing
within the transition, to which the downstream flow must conform to be physically
realistic. The main findings and implications are as follows:
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Figure 13. Values of (a) q, (b) P, (c) E and (d ) δ, for the cosine upstream flow equivalent to
the η profile when η =0.4. At selected Fr, the points represent: x – case (i), E is maximum;
� – case (ii), P is greatest; � – case (iv), E is maximum when P = 1. (Case (iii) is not shown.)
The dotted lines correspond to ‘similar’ upstream to downstream flow transitions when P = 1.
The uncertainties in values are as given in the caption of figure 7.

(i) A Froude number Fr∗ is determined in § 3 by applying the conditions of
conservation of volume, mass and momentum fluxes across a transition with q = 1
(no change in isopycnal levels) and P = 1 (when there is no entrainment). The value
of Fr∗ is consistent with interpolation to q = 1 and P =1 of the values of q, P and E
at higher Fr shown in figures 7, 10 and 13: the maximum loss in energy flux, E, tends
to zero as Fr tends to Fr∗.

(ii) Solution of the Taylor–Goldstein equation for the η profile (Appendix E) reveals
that long internal waves can travel upstream if (and only if) Fr is less than a value
Frc that lies at the boundary of possible dynamical stability where min(Ri1) = 1/4
when η < 2/3, but it is within the region min(Ri1) < 1/4 when 2/3 < h � 1. As
shown in figure 4, however, Fr∗ � Frc, there being equality only in the two-layer case,
η = 1. (Relative values of Fr∗ and Frc are considered for other profiles in Appendix
H.) Frc is a critical value in the sense of being the smallest Froude number at which
jumps can form and remain stable. If a jump were formed in a flow with Fr in the
range Fr∗ <Fr <Frc, it would collapse through the radiation of long internal waves
or columnar wave modes propagating ahead of the jump through the upstream flow,
effectively ‘blocking’ and therefore modifying the upstream flow. (The width of the
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Figure 14. The non-dimensional upward diffusive and advective fluxes, F and Q∗, given by
(B 7) and (B 3), respectively, for the cosine upstream flow equivalent to the η profile when
η = 0.4. The fluxes are those across the 10 selected isopycnal surfaces (numbered from n= 1,
the lowest, to n= 10 at z = hi) which are marked in figure 3(c), as they pass through the
transition region. (a) Case (i); (b) case (ii); (c) case (iv). (Case (iii) is not shown.) The fluxes
are shown at: o, Fr = 3; x, Fr =5; and �, Fr = 7. The upward advective flux Q∗ at the upper
(n= 10) isopycnal is equal to (1 − P ). The uncertainty in the flux values is about 0.01.

front associated with a columnar mode propagating upstream will increase in time,
t, roughly as (Nt)1/3, where N is a measure of the buoyancy frequency; McEwan &
Baines 1974; Baines 1995). Values of q, P, E and δ appear to change smoothly through
the value Fr = Frc (figures 7 and 10). A stable stationary hydraulic jump involves
a multiplicity of modes that, together, combine to give a local change in isopycnal
levels that can remain stationary in the flow, preserving the fluxes of volume, mass
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and momentum passing through it and which will not decay through upstream wave
radiation.

(iii) It follows that, in general, Fr >Fr∗ is a necessary condition for a stationary
hydraulic jump to occur, as is also its equivalent, (26):

∫ H

0

[
u2

1(z) − z2N2
1 (z)

]
dz > 0,

where N1(z) is the buoyanscy frequency, but they may not be the most stringent.
In the examples of the η profiles, where Fr∗ < Frc, a more severe condition is that
Fr >Frc. (This has not, however, been proved to hold for general upstream profiles
of velocity and density, only for the η profiles.)

(iv) The minimum Ri in the η profile flows in which a stationary transition is
possible are less than 1/4. This implies that the upstream flow may be dynamical
unstable. The two-layer flow with η = 1 is known to be unstable, but η = 0 is stable.
(Several other boundary flows are known in which the critical Ri is less than 1/4;
Thorpe & Ozen 2007.) Although, for the η profile, it is necessary that the min(Ri1) <

1/4 for a hydraulic jump to occur, it is not, in general, necessary that a flow is
dynamically unstable to Kelvin–Helmholtz instability. In cases where the upstream
flow is dynamically unstable, transitions may result from a spatial Kelvin–Helmholtz
instability, analogous to that studied by Koop & Browand (1979). The asymmetry of
the downstream profiles when η =0.4 (figure 9) and the values of q1/2 (table 1 and
§ 6.3) imply that mixing in the transitions is affected by the presence of the boundary.
(The source of turbulence may affect the mixing in the transition region; see (xvi)
below.).
The following conclusions apply for η profiles.

(v) When Fr >Fr∗, downstream flows are found that comply with the imposed
conditions, but (except when conditions such as those in the four cases of maximum
E, maximum P, minimum q and maximum E, but P =1, are applied) these flows are
not unique, i.e. with one upstream flow leading to just one single possible downstream
flow. Although, for simplicity, examples have been selected in which the upstream
density and velocity profiles are the same (i.e. F1 = f1 in (1) and (2)), profiles emerge
downstream that are different from those upstream and in which the density differs
from velocity: an assumption that the profiles of velocity and density are the same
downstream as they are upstream is generally untenable. The cosine profiles lead to
profiles and parameter values that are similar to those of the equivalent η profiles
(figures 12–14 and figures 9–11, respectively): the discontinuities in the gradients of
density and velocity in the latter upstream flows appear to have little effect on the
downstream flows.

(vi) With η = 0 or 0.4, the size of the jumps in a flow with Froude number
Fr � Frc (the Froude number necessary for stationary jumps to be possible), are of
finite amplitude. The smallest possible values of q are given by case (iii). As shown in
figure 7(a), q ∼ 1.6 at Fr = Frc, =8 when η = 0, while from figure 10(a), q ∼ 1.45 at
Fr =Frc, = 4.8 when η = 0.4. The loss in non-dimensional energy flux, E, at Fr = Frc,
is typically about 0.05 or more, depending on the selection of the extreme case in
figures 7(c) and 10(c). Stable jumps have finite amplitudes and energy dissipation
rates. It also follows that q > 1 (a rise in the thickness of the flowing layer, although
not necessarily of all isopycnals) in a hydraulic jump, and q cannot be less than 1.
Small-amplitude transitions with q ∼ 1 occur when Fr is slightly greater than Fr∗.
Since the Fr∗ curve approaches the Frc curve as η tends to 1 in figure 4 it follows
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that, although only finite amplitude jumps are possible for the two values chosen for
η (0 and 0.4), small-amplitude jumps should be possible when η is near unity.

(vii) Some similarities can be seen in comparing the profiles of density and velocity
in figures 6 and 9 for η = 0 and 0.4, respectively, e.g. in cases (i) and (ii) the density
interfaces that appear in the downstream flows at z/h2 ≈ 0.4, and the relatively
uniformity of velocity near z = 0. There are also many differences, e.g. in case (iii) the
density at η = 0.4 more closely represents that of the upstream flow than do those
for η = 0. It appears unlikely that there is some general form of the downstream flow
profiles; the downstream flows depend not only on Fr but also on the shape of the
upstream flow profiles, f1 and F1.

(viii) In the range of Fr considered, the amplitudes q of the jump (figures 7a, 10a
and 13a), the loss E in dimensionless energy flux (figures 7c, 10c and 13c) and the
dimensionless diapycnal fluxes F and |Q∗| (figures 8, 11 and 14), all increase with Fr
in each of the extreme cases. If the upstream values of ρ0, ∆ and h1 are kept constant,
whilst U1 is varied, then since (8), E = E′/(ρ0g∆h2

1U1), the dimensional loss in energy
flux, we can write E′ =(ρ0(g∆h1)

3/2h1)Fr1/2E, which increases even more rapidly with
Fr than does E. The magnitude of the advective flux |QA| and the diffusive flux FA

also increase with Fr more rapidly than do |Q∗| and F, respectively. Values of |Q∗|
(figures 8, 11 and 14) are typically of order 0.1 in the range of Fr examined. The flux
Q∗ represents a cross-isopycnal entrainment rate divided by the vertically integrated
upstream volume flux. If L is the width of the transition and we is the entrainment
velocity (relating to (A 8) in Appendix A), |Q∗| ∼ weL/U1h1, equal to an entrainment
coefficient, we/U1, multiplied by the aspect ratio, L/h1, of the transition. If the aspect
ratio is of order unity, or greater, this implies an entrainment coefficient of order 0.1
(or less), in accord with commonly estimated values.

(ix) The maximum loss in energy flux (case (i)) occurs in conditions close to those
in which entrainment is greatest (case (ii)); values of E when P is maximum are only
slightly less than the values at maximum E (figures 7c, 10c and 13c).

(x) At values of Fr moderately greater than Fr∗, solutions for the downstream
flows satisfying all the imposed conditions are found even when entrainment is
excluded (case (iv), P = 1) but at higher values of Fr (e.g. when Fr = 9, > Frc and
with η =0.), no downstream flows have been found with no entrainment: there must
be entrainment into stable transitions at high Fr.

(xi) Downstream flows that are ‘similar’ to those upstream have corresponding
values of E that are of magnitude comparable to those found in cases (i) and (ii)
(figures 7c, 10c and 13c). The equivalent two-layer flows overestimate E when η =0
(figure 7c) but give consistent values when η = 0.4. For such ‘similar’ upstream and
downstream flows, however, there is no volume or mass flux across isopycnal surfaces
within the transition region (§ 5). Lacking such diapycnal transports, transitions in
such flows (or solutions incorporating an assumption of such similarity) cannot be
regarded as being, in the usual sense, turbulent. Isopycnals simply bend and remain
continuous within the rather passive transition region.

(xii) Even though the coefficients listed in table 2 indicate that in some cases
convergence of the series (38) is (at best) slow, the forms of F2 and f ′

2 found
for the downstream flow are among the possible flows that satisfy the applied
conditions ((a)–(k )). They may not, however, accurately represent the most extreme
flows embodied in cases (i)–(iv), only those flows that can be represented by the
four-term series (38); whilst the forms of the upstream flows can themselves be
represented quite accurately by the series (Appendix G.1), not all possible functions
that may describe the downstream flow are necessarily well represented. The results
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are therefore indicative of the possible downstream flows, providing evidence that,
in extreme cases, downstream flows exist that conform to the imposed conditions,
rather than being definitive. The general consistency of the forms of F2 and of
f ′

2 as Fr increases and the relatively smooth trends in q, P and E versus Fr
shown in figures 7, 10 and 13 indicate a fairly regular pattern of behaviour even
though the representation of the downstream flow by (38) is approximate and
limited. The maximum energy flux lost from a given upstream flow is a function
of Fr (or q) and provides useful information about the greatest dissipation of
energy that can occur in the deep ocean flows and of its effect on ocean mixing
(Thorpe 2007).

(xii) Although not demonstrated in the above analysis, it may be expected that,
as in single-layer hydraulic jumps, waves in the downstream flow can travel in both
the upstream and downstream directions. This has not been tested in every case,
but in those where the downstream flow can be approximately represented by an
η profile (e.g. in case (iv) at η = 0 when Fr = 7, and case (iii) when η = 0.4 and
Fr =3 and 7), the Froude number of the downstream flow is well below the value
Frc at which upstream-travelling waves are prevented. If the downstream flows have
properties similar to those of the η profiles, min(Ri2) > 1/4 (condition (h)) may be
sufficient to ensure waves can travel in both directions as predicted by Bell (1974).
Since S � 1 (condition (i )) the Froude numbers of the downstream flows are less
than, or equal to, their corresponding critical values, Fr∗. If also, for these flows, the
corresponding Fr∗ � Frc, it again follows that they will support both upstream- and
downstream-travelling waves.

(xiv) No account has been taken, however, of the possible downstream flux of
energy from a transition region through the internal waves. When Fr∗ is only slightly
greater than Frc (i.e. when η ∼ 1, figure 4), jumps with Fr marginally greater than
Frc (and therefore not much greater than Fr∗) are likely to occur in which internal
waves transport energy from the transition, much as waves in single-layer undular
bores are known to do, or as do waves in circular two-layer jumps at relatively low
Froude numbers (Thorpe & Kavčič 2008; see also case (vi)).

(xv) There is no formal reason for selecting one or other (or any) of the four
extreme cases chosen in § 6.1, or for supposing that any one of them is appropriate,
and there remains the question, ‘What additional conditions may, in practise, constrain
the downstream flow so that only one can correspond to a given upstream flow?’ –
supposing that the downstream flow is uniquely determined by the upstream. A more
rigorous examination of the stability of the downstream flow than is afforded by
the condition (h) (Min(Ri2) � 1/4) or condition (i ) – see footnote to Appendix A –
might lead to a more severe constraint on the possible downstream flows. A reviewer
kindly suggests that angular momentum conservation may provide a further limit
(see Hornung, Willert & Turner 1995) but it is not clear how this may be applied to
a stratified, possibly turbulent, transition.

(xvi) In a real situation (e.g. in the ocean) it is likely that conditions far downstream
of a transition, a region in which upstream wave propagation can occur, control the
downstream flow structure and consequently the nature of a transition. It is also
possible that, in real flows, boundary slope and friction on the boundary (Swaters
2009), and the upward radiation of internal waves in stratified overlying water
have significant effects, modifying the conservation of momentum flux. (The flux
of momentum associated with radiating waves may amount to a few percent of
that carried by the flow (see e.g. Pham, Sarkar & Brucker 2009). Introduction of
stratification in the upper layer, however, introduces complications related to the
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density of fluid entrained by a jump and the pressure within the moving layer, that
make analysis more difficult.)

(xvii) It is possible that the turbulent processes within the transition region are not
adequately represented by the flux conditions, (j ) and (k ). This concern relates to the
uncertain assessment of the diapycnal flux and dissipation within the transition (as
expressed, e.g. by the note below (16)). The selection of Γ = 0.2 is somewhat ad hoc,
and Γ may vary (Peltier & Caulfield 2003), perhaps with the flow Reynolds and/or
Richardson numbers. If, for example, the transition is like a spilling or plunging
surface wave breaker, with a jump representing a mixing layer (as suggested by
Peregrine & Svendsen 1978, and supported with illustrations by Hoyt & Sellin 1989),
or with single or multiple unsteady rotors (or ‘rollers’) producing static instability
and initiating turbulence in the downstream flow (Yeh 1991; Svendsen et al. 2000),
or if a near-bed rotor/bolus develops, as in large-amplitude internal waves, will the
flux assumptions hold true and will the entrainment parameter we/U1 (on which
the relative magnitude of the KE of the entrained flow depends; Appendix A) still
be small? Information is required about the nature of the turbulent flow within a
transition and how it should be represented or ‘parametrized’.

7.2. Application

Although some measurements upstream and downstream of the suspected location
of jumps in the abyssal ocean have been obtained (e.g. Polzin et al. 1996), there
are presently too few observations to establish the certain existence there of
hydraulic jumps. More studies are planned (A. Thurnherr and J. Mackinnon, private
communication 2009). In principle, profiles of the mean flow measured upstream and
downstream of a suspected jump could, if Fr > Fr∗, be used to estimate the loss in
energy flux (8) and the diapycnal fluxes (B 3) and (B 7) within the transition region.

A ‘pseudo Froude number’, 〈U〉/〈N〉H , with a critical value assumed to be about
unity, has been used as a guide to test whether flows observed in abyssal valleys in
the deep ocean are likely to be subcritical or supercritical (St Laurent & Thurnherr
2007; MacKinnon et al. 2008), where 〈U〉 and 〈N〉 are the depth-averaged velocity
and buoyancy frequency over the moving layer of depth H. This Froude number can
be compared with that derived for the η profiles, with the implicit assumption that the
effects of stratification and flow above the moving layer can be ignored. Calculating
〈U〉 and 〈N〉 for the η profile (27), and putting H = h1:

(〈U〉/〈N〉H )2 = Fr(1 + η)2/[8(1 − η)] (39)

with Fr = U 2
1 /(g∆H ). Values of 〈U〉/〈N〉H derived from (39), with Fr =Fr∗ and

Fr = Frc, are shown as functions of η in figure 15.
The flow through the Lucky Strike segment of the Mid-Atlantic Ridge studied by

St Laurent & Thurnherr (2007) may approximately be represented by the η profile
(27) with values of η in the range 0–0.4. The reported values of 〈U〉/〈N〉H are
0.92 upstream and (0.36–0.37) downstream of the location of a possible hydraulic
jump. Although the downstream values lie below both Fr∗ and Frc in figure 15,
consistent with a subcritical flow, the upstream value is between Fr∗ and Frc where
the continuity equations for a jump are satisfied, but where upstream-going waves
may be possible, relaxing any transition that occurs.

Flows in the ocean are unsteady, often tidally modulated. Jumps may be inherently
transient, depending on the strength of the tidal component (e.g. Farmer &
Armi 1999), with Fr perhaps varying from >Frc to <Fr∗. The time required for
disintegration of a jump may be considerable if Fr is near Fr∗ since, as shown in
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Figure 15. The critical values of 〈U〉/〈N〉H as functions of η, corresponding to those
labelled Fr∗ and Frc in figure 4 and calculated using (39).

figure 4, the speed of long internal waves is then small: the curve (−c/U ) = 10−1

corresponds roughly to Fr = Fr∗ when 0 � η � 0.4 with smaller speeds in
Fr∗ < Fr < Frc. With flows in the abyssal ocean typically of the order of 0.2 m s−1,
the distance that waves could propagate over an M2 tidal period from a hydraulic
jump in which Fr had fallen from Frc to Fr∗ would, over a tidal period, be about
1 km, a relatively small distance. In addition to direct investigations to establish the
existence of hydraulic jumps, further measurement is required of the flows through
abyssal valleys. Calculations should be made of the propagation characteristics of the
internal waves that flows can support.

7.3. Summary

Stationary hydraulic jumps occur in some stratified boundary shear flows. Stable
jumps may form when Fr exceeds a value Frc at which mode 1 long internal waves
or columnar modes cannot propagate upstream, and where min(Ri1) � 1/4. In the
η profile flows and in other flows considered in Appendix H, the critical Froude
number Frc exceeds Fr∗, the least value at which the equations of conservation of
volume, mass and momentum flux are satisfied. For Fr < Fr∗, stationary jumps
cannot occur; for Fr∗ < Fr < Frc, jumps may occur but will not be sustained; for
Fr >Frc, jumps of finite amplitude (q greater than about 1.4) are possible, generally
accompanied by entrainment from the overlying fluid but with an upstream flow that
may be dynamically unstable, an exception being when η =0; it is not, in general,
necessary that a flow is dynamically unstable to Kelvin–Helmholtz instability for a
jump to occur.

I am grateful to Mrs Kate Davis for assistance in preparing the figures and to
Professor Alan Davies for use of a computer.

Appendix A. Conservation equations in general form
With velocity given by (1) and density by (2), conservation of volume flux per unit

width from upstream (i =1) to downstream (i = 2) through the assumed transition is
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satisfied by

U1h1

∫ 1

0

F1(x) dx + Q = U2h2

∫ 1

0

F2(x) dx, (A 1)

where Q is the flux of fluid of density ρ0(1−∆), per unit channel width, entrained from
the overlying uniform layer into the moving lower-layer flow. Defining an entrainment
factor P as

P = Q

/(
U1h1

∫ 1

0

F1(x) dx

)
+ 1, (A 2)

(A 1) gives

P = U2h2

∫ 1

0

F2(x) dx

/ (
U1h1

∫ 1

0

F1(x) dx

)
, (A 3)

which is >1 if Q > 0 (i.e. there is positive entrainment into the transition region).
The conservation of mass flux per unit width, including the flux Qρ0(1 − ∆) from

the overlying layer, leads in general, using (A 1), to a further relation:

U1h1

∫ 1

0

f1(x)F1(x) dx = U2h2

∫ 1

0

f2(x)F2(x) dx, (A 4)

so that (A 3) can be written as

P =

∫ 1

0

f1(x)F1(x) dx

∫ 1

0

F2(x) dx

/(∫ 1

0

f2(x)F2(x) dx

∫ 1

0

F1(x) dx

)
. (A 5)

Taking a volume with vertical surfaces in the steady flows upstream and
downstream of a transition, a lower surface in the plane, z = 0, where friction is
neglected, and an upper surface in the zero-stress region above the flowing layer,
momentum conservation (conservation of

∫
pi dz +

∫
(ρiui)ui dz, where pi is the

pressure, assumed to be hydrostatic upstream and downstream of a transition)
leads to

U 2
1 /g∆h1 = 2q

[
q2

∫ 1

0

xf2(x) dx −
∫ 1

0

xf1(x) dx

]/[ ∫ 1

0

F 2
1 (x) dx

{
q − P 2

×
∫ 1

0

F 2
2 (x) dx

(∫ 1

0

F1(x) dx

)2/[ ∫ 1

0

F 2
1 (x) dx

(∫ 1

0

F2(x) dx

)2]}]
(A 6)

as a condition for a transition to occur, where we have used the equality∫ 1

0

∫ 1

x

f (y) dy dx =

∫ 1

0

xf (x) dx.

The loss in energy flux per unit width, E′ (the change in the sum of the
KE flux,

∫
(ρiu

2
i /2)uidz, and the potential energy flux,

∫
gρizuidz, accounting for

the work done by the pressure force,
∫

piuidz) is given by Thorpe & Ozen
(2009). Writing Fr = U 2

1 /g∆h1, it can be expressed in non-dimensional form
as

E ≡ E′/
[
ρ0g∆h2

1U1

]
= (Fr1/2)

{ ∫ 1

0

F 3
1 (x) dx −

∫ 1

0

F 3
2 (x) dx

[ ∫ 1

0

F1(x) dx/

∫ 1

0

F2(x) dx

]3

P 3/q2

}
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+ 2

{∫ 1

0

xf1(x)F1(x) dx +

∫ 1

0

F1(x)

∫ 1

x

f1(y) dy dx

}
− 2q

{ ∫ 1

0

f1(x)F1(x) dx

/

×
∫ 1

0

f ′
2(x)F2(x) dx

}{∫ 1

0

xf ′
2(x)F2(x) dx +

∫ 1

0

F2(x)

∫ 1

x

f ′
2(y) dy dx

}
, (A 7)

provided that the KE flux carried by the entrained flow Q is negligible, with
Fr =U 2

1 /g∆h1 given by (A 6). With no source of energy flux within the transition,
E′ cannot be negative if the transition is to be physically possible.

The KE flux of the entrained flow with a mean entrainment velocity, we = Q/L,
where L is the length of the transition (figure 1), divided by the change in the KE
flux of the horizontal flow, is equal to µ(we/U1)

2, where

µ = (P −1)

∫ 1

0

F1 dx

/[ ∫ 1

0

F 3
1 dx−(P 3/q2)

∫ 1

0

F 3
2 dx

(∫ 1

0

F1 dx

/∫ 1

0

F2 dx

)3]
.

(A 8)

Although µ increases with Fr, it is less than unity in all the cases examined here,
and since the entrainment parameter, we/U1, is generally less than 0.1 (Turner 1973),
the KE flux carried by the entrained flow Q is relatively small and is neglected.

The condition that the downstream flow cannot undergo a further transition is that
its Froude number is subcritical, or from (22):

U 2
2 /(gf2(0)∆h2) � 4

∫ 1

0

xf2(x) dx

/∫ 1

0

F 2
2 (x) dx. (A 9)

Using (A 4), this can be expressed in terms of a stability parameter S:

S ≡ Fr

/{
4q3

[∫ 1

0

xf2(x) dx

/∫ 1

0

F 2
2 (x) dx

][ ∫ 1

0

f2(x)F2(x) dx

/∫ 1

0

f1(x)F1(x) dx

]2

f2(0)

}
,

(A 10)

where S � 1 implies stability and S > 1 implies that the downstream flow can undergo
a further shape-preserving transition, a condition of instability. (This condition may
be more severe than is necessary. As shown in § 4.3, for some flows Fr∗ is not the
critical Fr, and terms on the right-hand side of (A 9) and (A 10), derived from
Fr∗ defined in (22), should be greater. Moreover, a reviewer has kindly pointed out
that the condition is not essential because supercritical flows may be possible both
upstream and downstream of jumps (Baines 1995, ch. 3).)

Appendix B. Expressions for the diapycnal fluxes within the transition
With reference to figure 1, the net volume flux into ABCD must be zero since the

fluid is incompressible and, since there is no flux through CD, the vertical volume
flux per unit width through AB is

QA =

∫ z1

0

u1(z) dz −
∫ z2

0

u2(z) dz. (B 1)

Using (1) it follows that

QA = U1h1

∫ x1

0

F1 dx − U2h2

∫ x2

0

F2 dx, (B 2)
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where x1 = z1/h1, x2 = z2/h2. (Equation (A 1) follows if x1 = x2 =1, recalling that
at the top of the transition region, QA = −Q.) Using (A 3) to eliminate U2h2:

Q∗ ≡ QA

/(
U1h1

∫ 1

0

F1 dx

)

=

[∫ 1

0

F2 dx

∫ x1

0

F1 dx − P

∫ 1

0

F1 dx

∫ x2

0

F2 dx

] / [∫ 1

0

F1 dx

∫ 1

0

F2 dx

]
,(B 3)

which reduces to (3) if x1 = x2 = 1.
We next consider the mass flux per unit width into the region ABCD. This is

comprised of the advective and diffusive fluxes of mass or density:∫ z1

0

ρ1u1(z) dz − ρAQA − FA =

∫ z2

0

ρ2u2(z) dz, (B 4)

where FA is the diffusive flux of density through AB (there is again no flux through
CD, and AD and BC are taken sufficiently far upstream and downstream to ensure
there is no horizontal diffusive flux through these surfaces). Using (1) and (2), and
substituting for QA from (B 2), (B 4) can be written as

FA = 2∆ρ0

[
U1h1

(∫ x1

0

f1F1 dx−fA

∫ x1

0

F1 dx

)
−U2h2

(
δ

∫ x2

0

f ′
2F2 dx −fA

∫ x2

0

F2 dx

)]
,

(B 5)

where fA = f1(x1) = f2(x2) (equality because A and B are on the same isopycnal
surface). Using (A 4),

U2h2 = U1h1

∫ 1

0

f1F1 dx

/(
δ

∫ 1

0

f ′
2F2 dx

)
, (B 6)

and eliminating δ using (4) gives

F ≡ FA/(∆ρ0U1h1) = 2

{ ∫ 1

0

F2 dx

∫ 1

0

f ′
2F2 dx

[ ∫ x1

0

f1F1 dx − fA

∫ x1

0

F1 dx

]

−
∫ 1

0

F2 dx

∫ 1

0

f1F1 dx

∫ x2

0

f ′
2F2 dx + PfA

∫ x2

0

F2 dx

∫ 1

0

F1 dx

∫ 1

0

f ′
2F2 dx

}
/[ ∫ 1

0

F2 dx

∫ 1

0

f ′
2F2 dx

]
. (B 7)

Putting x1 = x2 = 1 and fA = 0, this is consistent with there being no diffusive flux
of density through the zero vertical density gradient of the fluid above the upper
surface of the transition.

Appendix C. Maximum and minimum loss in energy flux
The entrainment factor P appears only in the first term of (8) and, all the integral

terms in the equation being positive, the term in P is negative. If the upstream flow
(F1, f1 and Fr) is given then, for specified functions (F2 and f ′

2) determining the
downstream flow, the maximum value of E given by (8) at any value of the jump
amplitude q is found when the entrainment factor P is a minimum but consistent
with (7) for Fr. The term in (8) within the {. . .} brackets represents the rate of loss of
KE flux in the transition, and (for a specified upstream flux) this is greatest when the
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downstream flux is least. (It may be foreseen that the downstream flux is likely to be
least when P is least: from (A 1), the downstream volume flux is least when the flux
of entrained water, Q, is a minimum.)

Differentiating (8) with respect to q at a given P, E is a maximum when

q = P

{(
Fr

∫ 1

0

F 3
2 dx

)∫ 1

0

f ′
2F2 dx

/[ ∫ 1

0

f1F1 dx

(∫ 1

0

xf ′
2F2 dx

+

∫ 1

0

F2

∫ 1

x

f ′
2(y) dy dx

)}1/3(∫ 1

0

F1 dx

/∫ 1

0

F2 dx

)]
, (C 1)

provided that this value can be reached when (7) is satisfied. If the downstream
profiles, F2 and f ′

2, remain unchanged (which is not necessarily the case), the value
of q at which E is a maximum increases as Fr1/3.

These results apply, however, only if the downstream flow given by F2 and f ′
2, is

specified and independent of Fr, q and P, which (as is evident in § 6) is not true in
general but is, for example, for the similar downstream flows described in § 5.

Appendix D. The smallest Fr

Putting F2 = F1, f
′
2 = f1 and P0 = 1 in (7) we obtain

Fr = 2

[∫ 1

0

xf1(x) dx

/∫ 1

0

F 2
1 (x) dx

]
Θ, (D 1)

where Θ = {q(q2 − P )/[P (q − P 2)]} and P � 1. The variation of Θ with q and P
is shown in figure 16(a). The value of Θ tends to zero at q =0 and P1/2, and to
infinity at q = P 2. The minimum of Θ with respect to q, found by differentiation, is
where 2q3 − 3q2P 2 + P 3 = 0, and putting P = 1 + ε where 0 � ε � 1, and neglecting
terms of higher order, we find q ≈ 1 ± ε1/2, and Θ ≈ 2(1 ± ε1/2), the positive signs
corresponding to the minimum value of Θ . The limiting value, Θ = 2, is smoothly
approached as q tends to 1 (a jump of zero amplitude) and P tends to 1, implying no
entrainment, as shown in figure 16(b). The limiting value of Fr is therefore as given
in (22).

From (A 7), the loss in energy flux when F2 = F1, f
′
2 = f1 is

E = (Fr1/2)

{∫ 1

0

F 3
1 (x) dx(1 − P 3/q2)

}
+ 2(1 − q)

{ ∫ 1

0

xf1(x)F1(x) dx

+

∫ 1

0

F1(x)

∫ 1

x

f1(y) dy dx

}
, (D 2)

and this tends to zero as P and q tend to unity and is negative when 1 < q < P 1/2

where, as shown in figure 16(a), Θ > 0. Although it is shown in Appendix F that
E < 0 if q < 1 for the η profiles, it is not evident that E < 0 when q < 1 for all
possible profiles, and jumps to a smaller flow thickness, with q < 1, might be possible.

Appendix E. Long waves in an η profile
Analytical solutions can be found for the speed of long internal waves in flows

with η profiles. When the Boussinesq approximation is valid, the Taylor–Goldstein
equation for neutral internal waves in the region ηh � z � h where the shear and N
are constant is

d2ϕ/ dz2 + {N2/(u − c)2 − k2}ϕ = 0 (E 1)
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P = 1

P > 1
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Figure 16. The variation of Θ with q and P. (a) Θ as a function of q when P = 1 and at a
value of P > 1. (b) Details of the variation of Θ near q = 1 for (labelled) values of P, also near 1.
Arrows mark the minimum values of Θ , tending towards Θ = 2 at q = 1, P =1.

with appropriate boundary conditions, where the stream function is ψ(x, z, t) =
φ(z) exp[ik(x − ct)], and k is the real wavenumber in the horizontal x direction of a
flow, u(z), in which the buoyancy frequency is N. When u =U1(h − z)/[h(1 − η)] as in
(27), and in the long-wave limit, kh = 0, this reduces to

[(U1(h − z) − ch(1 − η)]2d2ϕ/ dz2 + N2(1 − η)2ϕ = 0 (E 2)

with the solution

ϕ = A1{[(U1(h − z) − ch(1 − η)]/[Nh2(1 − η)]}p1

+ A2{[(U1(h − z) − ch(1 − η)]/[Nh2(1 − η)]}p2

, (E 3)

where

pn = {1 ±
√

[1 − (2Nh(1 − η)/U1)
2]}/2 = (1 ± r)/2, n = 1, 2, (E 4)

with

r =
√

[1 − (2Nh(1 − η)/U1)
2]. (E 5)

Boundary conditions are found by matching the vertical velocity and pressure at
z = ηh+a exp[ik(x−ct)] and z =h+b exp[ik(x−ct)], where a and b are the amplitudes
of small displacements, to those of irrotational potential flow solutions in 0 � z � ηh

and z � h, in the usual way, or by taking ϕ = 0 at z = 0 if η = 0.
When r is real, putting the η profile value, N2 = 2∆g/(h(1 − η)) and U = U1, (E 5)

gives

Fr = U 2
1 /g∆h1 = 8(1 − η)/(1 − r2) > 8(1 − η). (E 6)

From (28), 8(1−η) is the value of Fr when min(Ri) = 1/4, a curve shown in figure 4.
The boundary conditions lead to a dispersion relation:

[(−c/(U1 − c)]r = [(1 + r)/(1 − r)]{3η − 2 − rη + 2(1 − η)(c/U1)}/

× {3η − 2 + rη + 2(1 − η)(c/U1)}. (E 7)

Real roots for c/U1 are possible only if c/U1 > 1 or c/U1 < 0, i.e. when there is no
critical layer where the speed of the mean flow matches the speed c. Roots can be
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found as c/U1 → 0− (the limit for upstream travelling waves) only if η > 2/3; there
are no wave solutions when η < 2/3 if Fr > 8(1 − η).

If, however, r is imaginary, = iR, say,

Fr = U 2
1 /g∆h1 = 8(1 − η)/(1 + R2)) < 8(1 − η), (E 8)

and the dispersion relation becomes

(R/2) ln[(U1 − c)/(−c)] = tan−1(−R/Ψ ), (E 9)

where

Ψ = 1 − η(1 + R2)/[2(1 − η)(1 − c/U1)]. (E 10)

Solutions (R → 0+) with c/U → 0− are found provided η < 2/3 and Fr < 8(1−η).
Differentiating (E 9) with respect to h, we find that ∂c/∂h < 0 as c/U1 → 0−, whilst
∂c/∂h > 0 if c/U1 → 1+, properties that are in accord with those leading to a
convergence of characteristics and the formation of hydraulic jumps in single-layer
flows (e.g. Lighthill 1978).

Values of Fr =Frc where −c/U1 = 0 are shown in figure 4 in the range 0 � η � 1.
Also shown are the phase speeds (equal to the group speeds) of the long and
relatively fast (mode 1) waves when Fr < Frc calculated by numerical solution of
(E 7) and (E 9). The existence of upstream propagating waves when min(Ri) = 1/4
(e.g. when Fr < Frc in η < 2/3) is consistent with Bell’s theorem (Bell 1974). In
a two-layer flow where η = 1, although the flow is always unstable through Kelvin–
Helmholtz instability to sufficiently short waves, analytical solutions can be found
for long waves: c/U1 = 1 ± (2/Fr)1/2 (e.g. Thorpe & Kavčič 2008). Waves can travel
upstream if Fr < 2 with speeds −c/U1 = (2/Fr)1/2 −1, and, for example, −c/U1 = 0.1
when Fr = 1.65, and −c/U1 = 0.01 when Fr = 1.96, as shown in figure 4. No waves
propagate upstream when η =1 if Fr > 2.

Appendix F. Formulae for E in shape preserving flows
If the η-profile, (27), is chosen for the upstream flow, (35) gives

E = Fr(1 + 3η)(1 − P 3/q2)/8 − (q − 1)[2(1 + 2η + 3η2) + 3(1 + η)2]/12, (F 1)

from which it can be shown that E is positive for all q > 1 but negative if q < 1. The
corresponding shape preserving cosine profile (30) leads to

E = Fr[16 − 3π + η(16 + 3π)](1 − P 3/q2)/64 − (q − 1)

× [8(1 + η)2 − π(1 − η2) + (π2 − 8)(1 − η)2]/16, (F 2)

and again E > 0 if q > 1 and < 0 if q < 1.

Appendix G. The method of solution and the sine series (38)
G.1. Procedure for numerical solution

The upstream flow and value of Fr are selected. There are eight unknowns, am and
bm, m =1–4, involved in using (38), and each is ascribed a range of seven possible
values, beginning with relatively wide ranges. These values of am and bm are used to
find profiles of F2 and f ′

2. The profiles of F2 and f2
′ that satisfy conditions (a) and (c)

are then used to determine the integral terms in (A 1)–(A 10). The Froude number
Fr is calculated using (7) for typically 50 values of q and some 20 values of P (q
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increasing from qm (18) and P decreasing from Pm (19)), leading to a total of about
109 estimates of Fr. Those that give Fr � 0 (condition (g)) and are more than ±0.01
from the selected value of Fr are discarded: depending on η and Fr, typically about
5 × 106 values lie within the range. Calculations are then made of min(Ri2) using
(9), S (10) and E (8), with possible values discarded according the conditions (h), (i )
and (f ), respectively, leaving typically about 106 ‘possible’ values. Values of Γ are
calculated using (17). Negative diffusive flux values are discarded in accordance with
condition (j ), leaving some 5 × 105 values, before condition (k ) is applied, retaining
only some 104 (or fewer – especially in case (iii)) values of Γ that are between 0.19
and 0.21.

Of the remaining sets of values of am and bm, those that lead to optimal values of
q, E or P as selected to comply with cases (i)–(iv) in § 6.1 form possible ‘solutions’ for
downstream flows that pass the several imposed conditions. If any of these values of
am or bm are at the bounds of their chosen range, the ranges are revised and extended
accordingly and, once the ranges span the possible solutions, their width is decreased
to refine the selections and to obtain more precise estimates of am and bm. It typically
requires four to six reiterations until solution values of am and bm are found to within
factors of 0.01.

G.2. Fit of the series (38) to the selected upstream profiles

The representation (38), but with an unbounded sine series (m extending to infinity),
is equal to the η-profile, (27), when am = 2 sin(mπη)/[(mπ)2(1 − η)].

The fit is exact if η = 0, with am = 0. If η =0.4 we find a1 = 0.321, a2 = 0.0496,
a3 = −0.0221 and a4 = 0.0201. (The following term is a5 = 0.) The root mean square
difference between the truncated four-term series (38) and the η-profile is then 0.00838,
indicating that (38) gives a reasonably close fit. The maximum difference between
the series expression and (27) is 0.033 at x = 0.4, the point where the gradient of the
η-profile is discontinuous. (If η = 0.7, then a1 = 0.546, a2 = −0.161, a3 = 0.0232 and
a4 = 0.0248. The root mean square difference between the series (38) and the η-profile
is 0.0233: (38) giving a reasonably close fit. The maximum difference between the
two series is 0.054 at x = 0.72. In the two-layer flow when η =1.0, the constants
am =2/(mπ), and have relatively slow convergence with increasing m, and for this
reason calculations have been limited to η � 0.7.)

The series (38) can similarly be fitted to the cosine profile (30) scaled to the η-profile
with am = A/[πm(m2 − A)][cos(mπB) + (−1)m]/[(mπ)2(1 − η)], where A= {[2(1 + η) +
π(1 − η)]/[2π(1 − η)]}2 and B =[2(1 + η) − π(1 − η)]/[[2(1 + η) + π(1 − η)], giving
a1 = 0.165, a2 = 0.134, a3 = −0.0279 and a4 = 0.00193 when η = 0.4. The root mean
square difference between the series (38) and the cosine-profile (30) is 0.00619, again
indicating a reasonably close fit. The maximum difference between the two series is
less than 0.012.

It is acknowledged, however, that the best fit of the series (38a) leads, in 0 � x � η1

of (27) and 0 � x � l/h′
1 of (30), to regions where df ′

2(x)/ dx > 0, the sine series
failing to represent the constant density exactly. At some levels the density variable f ′

2

exceeds unity, its value at z = 0. For a downstream flow having an η-profile with η = 0,
the problem does not arise but, if η > 0, the values ai in the sine series representations
of downstream flows with η- or cosine-profiles have to be modified if the series is to
satisfy the conditions (c) and (d ) of § 2.
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Appendix H. Other upstream profiles
The values of Frc, F r∗ and c shown in figure 4 depend on the profiles, the η profiles,

selected to represent the upstream flow. If, for example, the density profile remains
unchanged with f1 given by (27) but a uniform shear is introduced in the lower layer
reducing the flow to zero at z = 0:

F1 =

{
x/η, if 0 � x � η � 1,

(1 − x)/(1 − η), if η � x � 1,
(H 1)

then (22) gives

Fr∗ = 2(1 + η + η2), (H 2)

instead of (29). The speed of long waves can be found as in Appendix E. There
are upstream travelling waves (−c/U > 0) for all Fr except for η = 0, when the flow
reduces to the η profile with η = 0 and the phase speeds are as shown at η = 0
in figure 4, being zero if Fr � 8. When η = 1, upstream travelling solutions are
c/U = −[(1 + 8/Fr)1/2 − 1]/2 (Thorpe & Kavčič 2008), tending to zero only as Fr
tends to infinity. No stationary hydraulic jump without upstream wave propagation
appears possible except when η = 0; as for the η profile, Fr∗ � Frc.

If a uniform shear is introduced above the stratified region, e.g. u1 = U0(h1 −z)/(H −
h1) in h1 � z � H and u = −U0 in z � H , and the flow is as given in (1) and (2)
with i = 1 for 0 � z � h1, it can be shown that the boundary condition at z = h1 for
the stream function of the flow in z � h1 remains unchanged in the long-wave limit.
The eigenvalues c of the phase speed are therefore unchanged by the presence of the
shear layer in the unstratified region h1 � z � H . With the added shear layer, the
‘extended η profile’ replacing (27) is

F1(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if 0 � x � η ζ,

1 + (1 − φ)(ηζ − x)/[ζ (1 − η)], if ηζ � x � ζ,

φ(1 − x)/(1 − ζ ), if ζ � x � 1

0, if x � 1

(H3)

and

f1(x) =

⎧⎪⎨
⎪⎩

1, if 0 � x � ηζ,

(ζ − x)/[ζ (1 − η)], if ηζ � x � ζ,

0, if x > ζ,

(H 4)

where x = z/H, ζ =h1/H with 0 < ζ < 1 is a parameter that defines the relative
thickness of the unstratified region of uniform shear, V =U1 + U0 is the maximum
flow speed (that in 0 � x � ηζ ), and φ =U0/V defines the magnitude of the flow in
the uniform shear region. The Froude number of the extended η profile is

Fr = V 2/g∆H = ζF r/(1 − φ)2, (H 5)

where Fr = U 2
1 /g∆h1 is the Froude number of the η profile. For the extended η

profile, (22) gives the smallest Froude number at which the conservation equations
are satisfied:

Fr∗ = 2ζ 2(1 + η + η2)/{ζ [1 + 2η + φ(1 − η) − φ2η] + φ2}. (H 6)

The values of (−c/U1) in figure 4 can be used to establish the value Fr = Frc at which
upstream wave propagation is just prevented. Since c is the same in the extended
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flow as in the original η profile, the maximum upstream wave speed will be zero
if −c = U0. If, for example, η = 0.5, then from figure 4, Fr = 1.6 when −c/U1 = 0.1.
Putting −c = U0, and using φ = U0/V =U0/(U1 + U0) = [(−c/U1)/(1 + (−c/U1)], we
find φ = 0.1/1.1, and (for this value of φ or U0) Frc = ζ1.6(1.1)2 = 1.936ζ , from (H
5). It follows, using (H 6), that Frc > Fr∗ for all ζ in the range 0–1.

No extended η profiles have been found for which Frc< Fr∗, when (22) would
give the critical Froude number, the value beyond which a transition may occur with
no upstream wave propagation.
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